The transit method requires watching the light output of a star over long periods of time. A transit occurs when the planet crosses in front of its star from earths point of view. Since there is a small object (the planet) now blocking some of the star, it appears to dim a little bit for a while until the planet passes. If we are in a position where that occurs regularly (most paths of planets do not happen to be on the line of sight between earth and their star) we can deduce the period of orbit. From the amount of dimming and the period you can estimate the mass
Answer:
<h3>473.8 m/s; 473.8 m/s</h3>
Explanation:
Given the initial velocity U = 670m/s
Horizontal velocity Ux = Ucos theta
Vertical component of the cannon velocity Uy = Usin theta
Given
U = 670m/s
theta = 45°
horizontal component of the cannonball’s velocity = 670 cos 45
horizontal component of the cannonball’s velocity = 670(0.7071)
horizontal component of the cannonball’s velocity = 473.757m/s
Vertical component of the cannonball’s velocity = 670 sin 45
Vertical component of the cannonball’s velocity = 670 (0.7071)
Vertical component of the cannonball’s velocity = 473.757m/s
Hence pair of answer is 473.8 m/s; 473.8 m/s
Answer:a. Magnetic dipole moment is 0.3412Am²
b. Torque is zero(0)N.m
Explanation: The magnetic dipole moment U is given as the product of the number of turns n times the current I times the area A
That is,
U = n*I*A
But Area A is given as pi*radius² since it is a circular coil
Radius given is 5cm converting to meter we divide by 100 so we have our radius to be 0.05m. So area A is
A = 3.142*(0.05)² =7.86*EXP {-3} m²
Current I is 2 A
Number of turns is 20
So magnetic dipole moment U is
U = 20*2*7.86*EXP {-3}=0.3142A.m²
b. Torque is given as the cross product of the magnetic field B and magnetic dipole moment U
Torque = B x U =B*U*Sine(theta)
But since the magnetic field is directed parallel to the plane of the coil from the question, it means that the angle between them is zero and sine zero is equals 0(zero) if you substitute that into the formula for torque you will find out that your torque would equals zero(0)N.m