Considering the definition of molarity, the molar concentration is 0.294
.
Molarity reflects the concentration of a solution indicating the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

Molarity is expressed in units
.
In this case, you know:
- amount of moles of solute= 0.250 moles
- volume= 0.850 L
Replacing in the definition of molarity:

Solving:
molarity= 0.294 
Finally, the molar concentration is 0.294
.
Learn more about molarity with this example: brainly.com/question/15406534?referrer=searchResults
Answer: Endothermic
Explanation:
Bond-breaking is an endothermic process. Energy is released when new bonds form. Bond-making is an exothermic process. Whether a reaction is endothermic or exothermic depends on the difference between the energy needed to break bonds and the energy released when new bonds form.
Answer:
B. A rate constant
Explanation:
The mathematical expression of rate law is given below,
Rate = K[A]m[B]n
This rate law show the relationship between the rate of chemical reaction and concentration of reactants.
In given equation [A] and [B] are molar concentration of reactants while K represent rate constant.
The value of K is specific for particular reaction at particular temperature,
m and n are represent exponents and determine experimentally. The value of K is not depend upon the concentrations of reactant but depend upon the surface area and temperature
The difference in elements??
The answer to this would be:
The shuttle can carry a maximum of 4 astronauts for one mission.
2 LiOH + CO2 -----> Li2CO3 + H2O
(3.50 × 10^4 g LiOH) (1 mol LiOH/ 24 g LiOH) ( 1 mol CO2 / 2 mol LiOH) ( 44 g CO2 /1 mol CO2) = 32, 083.33 g CO2
32, 083.33 g / 9 (8.8 × 10^2) = 4