Answer:
The volume of water to be added is 0.175 liters of water
Explanation:
The given concentration of the nitric acid = 55% (M/M)
The mass of the nitric acid solution = 100 gm
The concentration solution is to diluted to = 20% (M/M)
The 100 g 55%(M/M) nitric acid solution gives 55g nitric acid in 100 g of solution
Therefore, to have 20% (M/M) nitric acid solution with the 55 g nitric acid, we get
Let "x" represent the volume of the resulting solution, we have;
20% of x = 55 g of nitric acid
∴ 20/100 × x = 55 g
x = 55 g × 100/20 = 275 g
The mass of extra water to be added = The mass of the 20%(M/M) solution solution of nitric acid - The current mass of the 55%(M/M) solution of nitric acid
The mass of extra water to be added = 275 g - 100 g = 175 g
Volume = Mass/Density
The density of water ≈ 1 g/ml
∴ The volume of water to be added that gives 175 g of water = 175 g/(1 g/ml) = 175 ml. = 0.175 l
The volume of water to be added = 0.175 liters of water.
Correct answer is magnesium bromide. This is an ionic compound with metal forming a positive ion - K+ and halogen forming a negative ion - Br-. When group 7 element form ions they have a suffix -ide. Bromine is the element and when it forms a negative ion bromine is called bromide with the suffix.
Magnesium gives 2 electrons and bromine can take only 1 electron, therefore 2 bromine atoms are needed. Therefore magnesium forms ionic bonds with 2 bromine atoms.
The compound is called magnesium bromide
Answer:
O lowering the temperature of the system
This is the chemical doula for salt which is a polyatomic anion very prevalent in out daily lives e.g.
Salts, acid derivatives, and peroxides of sulfate are widely used in industry.
Metals are the type of elements that are most likely to form more than one type of ion, for instance iron can form the ion of Fe^2+ or Fe^3+.