1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
3 years ago
14

Which point lies on a circle with a radius of 5 units and center at P(6, 1)?

Mathematics
1 answer:
KengaRu [80]3 years ago
7 0
For a circle with radius 'r' ad center, (h,k)
the formula is

(x-h)²+(y-k)²=r²

(6,1)
r=5
(x-6)²+(y-1)²=5²
(x-6)²+(y-1)²=25
hmm
when x=6, then y=6
a point is (6,6)
also (6,-4)
also (1,1)
also (11,1)
You might be interested in
Question 1
drek231 [11]

QUESTION 1

We want to expand (x-2)^6.


We apply the binomial theorem which is given by the  formula

(a+b)^n=^nC_0a^nb^0+^nC_1a^{n-1}b^1+^nC_2a^{n-2}b^2+...+^nC_na^{n-n}b^n.

By comparison,

a=x,b=-2,n=6.


We substitute all these values to obtain,


(x-2)^6=^6C_0x^6(-2)^0+^6C_1x^{6-1}(-2)^1+^6C_2x^{6-2}(-2)^2+^6C_3x^{6-3}(-2)^3+^6C_4x^{6-4}(-2)^4+^6C_5x^{6-5}(-2)^5+^6C_6x^{6-6}(-2)^6.


We now simplify to obtain,

(x-2)^6=^nC_0x^6(-2)^0+^6C_1x^{5}(-2)^1+^6C_2x^{4}(-2)^2+^6C_3x^{3}(-2)^3+^6C_4x^{2}(-2)^4+^6C_5x^{1}(-2)^5+^6C_6x^{0}(-2)^6.

This gives,

(x-2)^6=x^6-12x^{5}+60x^{4}-160x^{3}(-2)^3+240x^{2}-1925x+64.


Ans:C

QUESTION 2


We want to expand

(x+2y)^4.


We apply the binomial theorem to obtain,


(x+2y)^4=^4C_0x^4(2y)^0+^4C_1x^{4-1}(2y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(2y)^3+^4C_4x^{4-4}(2y)^4.


We simplify to get,


(x+2y)^4=x^4(2y)^0+4x^{3}(2y)^1+6x^{2}(2y)^2+4x^{1}(2y)^3+x^{0}(2y)^4.


We simplify further to obtain,


(x+2y)^4=x^4+8x^{3}y+24x^{2}y^2+32x^{1}y^3+16y^4


Ans:B


QUESTION 3

We want to find the number of terms in the binomial expansion,

(a+b)^{20}.


In the above expression, n=20.


The number of terms in a binomial expression is (n+1)=20+1=21.


Therefore there are 21 terms in the binomial expansion.


Ans:C


QUESTION 4


We want to expand

(x-y)^4.


We apply the binomial theorem to obtain,


(x-y)^4=^4C_0x^4(-y)^0+^4C_1x^{4-1}(-y)^1+^4C_2x^{4-2}(2y)^2+^4C_3x^{4-3}(-y)^3+^4C_4x^{4-4}(-y)^4.


We simplify to get,


(x+2y)^4=^x^4(-y)^0+4x^{3}(-y)^1+6x^{2}(-y)^2+4x^{1}(-y)^3+x^{0}(-y)^4.


We simplify further to obtain,


(x+2y)^4=x^4-4x^{3}y+6x^{2}y^2-4x^{1}y^3+y^4


Ans: C


QUESTION 5

We want to expand (5a+b)^5


We apply the binomial theorem to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{5-1}(b)^1+^5C_2(5a)^{5-2}(b)^2+^5C_3(5a)^{5-3}(b)^3+^5C_4(5a)^{5-4}(b)^4+^5C_5(5a)^{5-5}(b)^5.


We simplify to obtain,

(5a+b)^5=^5C_0(5a)^5(b)^0+^5C_1(5a)^{4}(b)^1+^5C_2(5a)^{3}(b)^2+^5C_3(5a)^{2}(b)^3+^5C_4(5a)^{1}(b)^4+^5C_5(5a)^{0}(b)^5.


This finally gives us,


(5a+b)^5=3125a^5+3125a^{4}b+1250a^{3}b^2+^250a^{2}(b)^3+25a(b)^4+b^5.


Ans:B

QUESTION 6

We want to expand (x+2y)^5.

We apply the binomial theorem to obtain,

(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{5-1}(2y)^1+^5C_2(x)^{5-2}(2y)^2+^5C_3(x)^{5-3}(2y)^3+^5C_4(x)^{5-4}(2y)^4+^5C_5(x)^{5-5}(2y)^5.


We simplify to get,


(x+2y)^5=^5C_0(x)^5(2y)^0+^5C_1(x)^{4}(2y)^1+^5C_2(x)^{3}(2y)^2+^5C_3(x)^{2}(2y)^3+^5C_4(x)^{1}(2y)^4+^5C_5(x)^{0}(2y)^5.


This will give us,

(x+2y)^5=x^5+^10(x)^{4}y+40(x)^{3}y^2+80(x)^{2}y^3+80(x)y^4+32y^5.


Ans:A


QUESTION 7

We want to find the 6th term  of (a-y)^7.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=7,b=-y


We substitute to obtain,


T_{5+1}=^7C_5a^{7-5}(-y)^5.


T_{6}=-21a^{2}y^5.


Ans:D


QUESTION 8.

We want to find the 6th term of (2x-3y)^{11}


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=11,a=2x,b=-3y


We substitute to obtain,


T_{5+1}=^{11}C_5(2x)^{11-5}(-3y)^5.


T_{6}=-7,185,024x^{6}y^5.


Ans:D

QUESTION 9

We want to find the 6th term  of (x+y)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=5,n=8,a=x,b=y


We substitute to obtain,


T_{5+1}=^8C_5(x)^{8-5}(y)^5.


T_{6}=56a^{3}y^5.


Ans: A


We want to find the 7th term  of (x+4)^8.


The nth term is given by the formula,

T_{r+1}=^nC_ra^{n-r}b^r.

Where r=6,n=8,a=x,b=4


We substitute to obtain,


T_{6+1}=^8C_5(x)^{8-6}(4)^6.


T_{7}=114688x^{2}.


Ans:A





4 0
2 years ago
PLEASE HELP ASAP 30 POINTS!
sveta [45]

Answer:

-4/3

Step-by-step explanation:

6 0
11 months ago
Read 2 more answers
If Kates swing travels 8 feet forward, about how far will it travel backward?
Lostsunrise [7]
Kate will travel 8 feet backwards
8 0
3 years ago
Read 2 more answers
To download movies off the internet you must pay 1.99 per movie, plus onetime fee of 5.50. Write an expression to show the total
solmaris [256]
T=total cost m=number of movies t=1.99m+5.50. I hope this helped.
6 0
3 years ago
1. Ima Thief robs a bank and takes off in a getaway car. Five minutes Polly Srule takes off after Ima.
chubhunter [2.5K]

Answer:

a. 12 minutes

b. 34 minutes

Step-by-step explanation:

Here, we are told that Ima has driven 5 minutes before Polly started driving

So if Ima has driven for x minutes , polly would have driven for y minutes but the difference between x and y is 5

So mathematically;

x = y + 5

a. 17 = y + 5

y = 17-5 = 12 minutes

b. x = 29 + 5

x = 34 minutes

8 0
2 years ago
Other questions:
  • 9x) = 27^y and X-Y = -3/2<br> find the value of y
    5·1 answer
  • Find the value of each variable.
    11·1 answer
  • Which polynomial does the model represent?
    10·1 answer
  • If you can answer your cooler than my whole school
    7·1 answer
  • Which name applies to the angle pair shown below?
    6·2 answers
  • Below are two different functions, f(x) and g(x). What can be determined about their y-intercepts?
    7·1 answer
  • Find the probability of drawing an ace and a king in either order
    9·1 answer
  • (Calculus)
    6·2 answers
  • What is the sum of 5/11 + 1/3 in lowest terms?
    13·1 answer
  • If the Vertical angle of an isosceles triangle is equal to the sum of the base angle find the size of each angle
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!