Answer:
N= 3
Explanation:
For this exercise we must use Faraday's law
E = - dФ / dt
Ф = B . A = B Acos θ
tje bold indicate vectors. As it indicates that the variation of the field is linear, we can approximate the derivatives
E = - A cos θ (B - B₀) / t
The angle enters the magnetic field and the normal to the area is zero
cos 0 = 1
A = π r²
In the length of the wire there are N turns each with a length L₀ = 2π r
L = N (2π r)
r = L / 2π N
we substitute
A = L² / (4π N²)
The magnetic field produced by a solenoid is
B = μ₀ N/L I
for which
B₀ = μ₀ N/L I
The final field is zero, because the current is zero
B = 0
We substitute
E = - (L² / 4π N²) (0 - μ₀ N/L I) / t
E = μ₀ L I / (4π N t)
N = μ₀ L I / (4π t E)
The electromotive force is E = 0.80 mV = 0.8 10⁻³ V
let's calculate
N = 4π 10⁻⁷ 200 1.60 / (4π 0.120 0.8 10⁻³)]
N = 320 10⁻⁷ / 9.6 10⁻⁶
N = 33.3 10⁻¹
N= 3
Daniddmelo says it right there, don't know why he got reported.
The potential energy (PE) is mass x height x gravity. So it would be 25 kg x 4 m x 9.8 = 980 joules. The child starts out with 980 joules of potential energy. The kinetic energy (KE) is (1/2) x mass x velocity squared. KE = (1/2) x 25 kg x 5 m/s2 = 312.5 joules. So he ends with 312.5 joules of kinetic energy. The Energy lost to friction = PE - KE. 980- 312.5 = 667.5 joules of energy lost to friction.
Please don't just copy and paste, and thank you Dan cause you practically did it I just... elaborated more? I dunno.
0N. The net force acting on this firework is 0.
The key to solve this problem is using the net force formula based on the diagram shown in the image. Fnet = F1 + F2.....Fn.
Based on the free-body diagram, we have:
The force of gases is Fgases = 9,452N
The force of the rocket Frocket = -9452
Then, the net force acting is:
Fnet = Fgases + Frocket
Fnet = 9,452N - 9,452N = 0N