Answer:
0.0097 mol·L⁻¹
Explanation:
The balanced equation is
2NOCl ⇌ 2NO₂ + Cl₂
Data:
Your value of Kc is incorrect. It should be
Kc =1.6 × 10⁻⁵
[NOCl] = 0.50 mol·L⁻¹
[NO] = 0.00 mol·L⁻¹
[Cl₂] = 0.00 mol·L⁻¹
Calculations:
1. Set up an ICE table.

2. Calculate the equilibrium concentrations
![K_{\text{c}} = \dfrac{\text{[NO]$^{2}$[Cl$_{2}$]}}{\text{[NOCl]}^{2}} = \dfrac{(2x)^{2}(x)}{(0.50 - 2x)^{2}} = 1.6 \times 10^{-5}\\\\4x^{3} = 1.6 \times 10^{-5}(0.50 - 2x)^{2}\\x^{3} = 4.0 \times 10^{-6}(0.50 - 2x)^{2}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bc%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNO%5D%24%5E%7B2%7D%24%5BCl%24_%7B2%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNOCl%5D%7D%5E%7B2%7D%7D%20%3D%20%5Cdfrac%7B%282x%29%5E%7B2%7D%28x%29%7D%7B%280.50%20-%202x%29%5E%7B2%7D%7D%20%3D%201.6%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C4x%5E%7B3%7D%20%3D%201.6%20%5Ctimes%2010%5E%7B-5%7D%280.50%20-%202x%29%5E%7B2%7D%5C%5Cx%5E%7B3%7D%20%3D%204.0%20%5Ctimes%2010%5E%7B-6%7D%280.50%20-%202x%29%5E%7B2%7D)
This is a cubic equation. Some calculators can solve cubic equations, but we can solve it by the method of successive approximations.
We will make changes to the right-hand side until the calculated value of x no longer changes,
(a) 1st approximation
Assume that 2x is negligible compared to 0.50. Then
![x = \sqrt [3] {4.0 \times 10^{-6}(0.50)^{2}} = 0.010](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%20%5B3%5D%20%7B4.0%20%5Ctimes%2010%5E%7B-6%7D%280.50%29%5E%7B2%7D%7D%20%3D%200.010)
(b) 2nd approximation
Assume that x= 0.010. Then
![x = \sqrt [3] {4.0 \times 10^{-6}(0.50 - 2\times 0.010)^{2}} = 0.0097](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%20%5B3%5D%20%7B4.0%20%5Ctimes%2010%5E%7B-6%7D%280.50%20-%202%5Ctimes%200.010%29%5E%7B2%7D%7D%20%3D%200.0097)
(b) 3rd approximation
Assume that x= 0.0097. Then
No change, so x = 0.0097.
[Cl₂] = x mol·L⁻¹ = 0.0097 mol·L⁻¹
Check:

It checks.