Choices 1, 2, and 4 . . . . . Yes
Choices 3 and 5 . . . . . No
Answer:
-36.4 m/s
Explanation:
final velocity= initial velocity + acceleration x time
7 + (-9.8)(3)= -36.4 m/s
Given the following in the problem:
Distances : 2.0 m and 4.0 m
Sound waves : 1700 hz
Speed of sound : 340 m/s
Get the wavelength of the sound by using the formula:
Lambda = speed of sound/sound waves
Lambda = 340 m/s / 1700 hz
Lambda = 0.2
Get the path length difference to the point from the two speakers
L1 = 4mL2 = sqrt (42+ 22) m
Delta = 4.47
x = delta / lambda
If the outcome is nearly an integer, the waves strengthen at the point. If it is nearly an integer +0.5 the waves interfere destructively at the point. If it is neither the point is somewhat in in the middle.
Solving x = (4.47 – 4) / (0.2) = 2.35 an integer +0.5 so it’s a point of destructive interference.
Answer:
Longitudinal waves have the same direction of vibration as their direction of travel. This means that the movement of the medium is in the same direction as the motion of the wave.
Explanation:
It is given that,
Power of EM waves, P = 1800 W
We need to find the intensity at a distance of 5 m. Also, the rms value of the electric field.
Intensity,

The formula that is used to find the rms value of the electric field is as follows :

c is speed of light and
is permittivity of free space
So,

Hence, this is the required solution.