Answer: C
X = Displacement of the spring
Hooke's law: It states that the applied force F is proportional to the displacement of spring .
F ∝ x
Where, x = displacement of spring in meters
F = force, measured in Newtons
In another words The force F is equal to the constant K times the disparagement.
F = k.x
Where k is constant and it depends on elastic material.
Spring has restorative force.
If the spring moves in opposite direction then,
F = - k.x
A negative sign indicates that the spring resists and force is to the left. The compression of the spring is greater than the restoring force.
Example: A mass 'm' stretches a spring at a displacement x.
Answer:
Explanation:
Given
Distance = 4.0m
Time = 5.0 mins = 300secs
Required
Average speed
Average speed = Distance/Time
Average speed = 4.0/300
Average speed = 0.01333m/secs
Hence the average speed of the snail is 0.01333m/s
Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
Answer:
the force between the building and the ball is non-conservative (friction-type force)
Explanation
Explanation:For this exercise the student must create an impulse to move the ball towards the building, in this part he performs positive work since the applied force and the displacement are in the same direction.
When the ball moves it has a kinetic energy and if its height increases or decreases its potential energy also changes, but the sum of being must be equal to the initial work.
When the ball arrives and collides with the building, non-conservative forces, of various kinds; rubbing, breaking, etc. It transforms this energy into a part of heat and another in mechanical energy that the building must absorb, let us destroy its wall
Consequently, the force between the building and the ball is non-conservative (friction-type force
Answer:
82.4 cm
Explanation:
The object and screen are kept fixed ie the distance between them is fixed and by displacing lens between them images are formed on the screen . In the first case let u be the object distance and v be the image distance
then ,
u + v = 184 cm
In the second case of image formation , v becomes u and u becomes v only then image formation in the second case is possible.
The difference between two object distance ie( v - u ) is the distance by which lens is moved so
v - u = 82.4 cm