Explanation:
Given that,
(a) Work done by the electric field is 12 J on a 0.0001 C of charge. The electric potential is defined as the work done per unit charged particles. It is given by :



(b) Similarly, same electric field does 24 J of work on a 0.0002-C charge. The electric potential difference is given by :



Therefore, this is the required solution.
The North Magnetic Pole is the point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole.
We have here what is known as parallel combination of resistors.
Using the relation:

And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)

To ger effective resistance take the inverse:
we get,

The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.
Answer:
18.7842493212 W
Explanation:
T = Tension = 1871 N
= Linear density = 3.9 g/m
y = Amplitude = 3.1 mm
= Angular frequency = 1203 rad/s
Average rate of energy transfer is given by

The average rate at which energy is transported by the wave to the opposite end of the cord is 18.7842493212 W