To claculate the gravitational attraction between two bodies with mass 1(m1) and mass 2 (m2) you need to use the equation:
F= G ((m1*m2)/r^2)
Where;
G is the gravitational constant (6.67E-11 m^3 s-2 Kg-1) and
r is the distance between the two objects.
Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
1 watt = 1 joule per second
1 joule = 1 newton-meter
1 newton = 1 kg-meter per second²
Put it all together and you have . . .
1 watt = 1 <em>kg-meter² / second³
</em>
Answer:
V₂ = 1.5 m/s
Explanation:
given,
speed of the first piece = 6 m/s
speed of the third piece = 3 m/s
speed of the second fragment = ?
mass ratios = 1 : 4 : 2
fragment break fly off = 120°
α = β = γ = 120°
sin α = sin β = sin γ = 0.866
using lammi's theorem

A,B and C is momentum of the fragments

4 x V₂ = 2 x 3
V₂ = 1.5 m/s