Answer:
Estoy triste, tuve que regalar a mi perro
Answer : The correct statement is:
The density of each piece is the same as that of the original block.
Explanation :
Intensive property : It is defined as a property of substance which does not change as the amount of substance changes.
Examples: Temperature, refractive index, density, hardness, etc.
According to question, if Ana has a block made of pure gold and she cuts this block into two equal pieces then the density of each piece is the same as that of the original block because density is an intensive property that does not changes until and unless material is changed.
That means density remains same as that of the original piece.
Hence, the correct statement is the density of each piece is the same as that of the original block.
Answer:
a) AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Explanation:
a) AgNO3 + KI → Ag+ + NO3- + K+ + I-
Ag+ + NO3- + K+ + I- → AgI + KNO3
AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba^2+ + 2OH- + 2H+ + 2NO3-
Ba^2+ + 2OH- + 2H+ + 2NO3- → Ba(NO3)2 + 2H2O
Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → 6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3-
6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3- → Ni3(PO4)2 + 6NaNO3
2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → 2Al^3+ + 6OH- + 6H+ + 3SO4^2-
2Al^3+ + 3OH- + 3H+ + 3SO4^2- → Al2(SO4)3 + 6H2O
2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
<span>Pitch is sometimes defined as the fundamental frequency of a sound wave (i.e. generally, the lowest frequency in a given sound wave). For most practical purposes, this is fine, and pitch and frequency can be thought of as equivalent. On the other hand, for most practical purposes, amplitude can be thought of as volume.However, technically, pitch (and volume) are human perceptions. Thus, our perception of pitch and volume are not solely based on frequency and amplitude respectively, but are based on a combination of both (and even other factors). Frequency overwhelming dictates perceived pitch, but amplitude also does have some small, small effect on our pitch perception, especially when it is very large. For example, a very loud sound can have a different <span>perceived </span>pitch than you would predict from its frequency alone.That all being said, usually these effects are negligible, and pitch can be thought of as equivalent to fundamental frequency.
</span>