1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
11

For an individual ( not a repair station) to conduct a complete 100 hour inspection on an aircraft and approve it for return to

service requires a mechanic certificate with:______
Physics
1 answer:
Oliga [24]3 years ago
8 0

Answer:

For an individual ( not a repair station) to conduct a complete 100 hour inspection on an aircraft and approve it for return to service requires a mechanic certificate with and powerplant and airframe ratings

Explanation:

Because these are important certificates issued by the FAA giving the mechanic authority to inspect to inspect an aircraft and approve its return to services

You might be interested in
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
2 years ago
. A huge pile of leaves was wrapped in a tarp in the middle of a lawn. The wrapped leaves weigh 580 newtons. The coefficient of
Rina8888 [55]

The force required is 319 N

Explanation:

The force of static friction is a force that acts an object on a surface, when this object is pushed by another force to put it in motion. The direction of the force of friction is opposite to the direction of the force of push, and its value increases as the force of push increases, up to a maximum value given by:

F_f = \mu W

where

\mu is the coefficient of friction

W is the weight of the object

Therefore, in order to put the object in motion, the force applied must be greater than this value.

For the pile of leaves in this problem, we have:

\mu = 0.55 (coefficient of friction)

W=580 N (weight of the leaves)

Substituting, we find:

F=(0.55)(580)=319 N

Learn more about force of friction:

brainly.com/question/6217246

brainly.com/question/5884009

brainly.com/question/3017271

brainly.com/question/2235246

#LearnwithBrainly

7 0
3 years ago
Why does increasing the number of trials increase confidence in the results of the experiment?
Paladinen [302]
It increases confidence because the more times you conduct the same experiment over and over should either prove your hypothesis right and wrong and eliminate any random occurrences that might affect your results.
8 0
3 years ago
Read 2 more answers
A conducting bar moves along a circuit with a constant velocity. A constant magnetic field is perpendicular to the bar and circu
lana [24]

Answer:

0.500 T

Explanation:

Since the change in time and the number of coils are both 1, I set the problem up to be 1.3=(1.5(x)-13(x)). I then plugged in numbers for x until I got the answer to be 1.3 V.

6 0
3 years ago
A bus moving along a level road increases its speed from 20 m/s to 35 m/s in 15.0s. What is the car's acceleration?​
Ksju [112]

Explanation:

initial velocity U = 20m/s

Final velocity V = 35m/s

time = 15.0 secs

change in velocity = 35 - 15

= 20m/s

acceleration a = change in velocity/time V/t

a = (35-20)/15

a= 15/15

Hence, your acceleration is 1m/s^2

5 0
2 years ago
Other questions:
  • Describe asexual reproduction
    13·1 answer
  • A guitar string is fixed at both ends. If you tighten it to increase its tension, the frequencies of its normal modes will incre
    15·1 answer
  • Kim has a metal casting company which makes commemorative coins. She has 0.12 cubic meters of silver which she needs to make int
    9·1 answer
  • 4.7 cm. The tube is sealed at one end and loaded with lead shot to give it a total mass of M = 130 g. The tube floats in water (
    5·1 answer
  • You are skiing in ... preparation for a competition. being a dedicated physics student, you happen to have a scale with you. you
    15·1 answer
  • Which is not a unit of volume
    13·1 answer
  • How do you calculate acceleration?
    14·2 answers
  • A wheel starts from rest and has an angular acceleration that is given by α (t) = (6.0 rad/s4)t2. After it has turned through 10
    15·1 answer
  • Which sentence is a correct statement of Newton's second law?
    11·1 answer
  • What type of energy does the horse have because of its motion?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!