Answer:
(a) W = 1329.5 J = 1.33 KJ
(b) ΔU = 24.27 KJ
Explanation:
(a)
Work done by the gas can be found by the following formula:

where,
W = Work = ?
P = constant pressure = (0.991 atm)(
) = 100413 Pa
ΔV = Change in Volume = 18.7 L - 5.46 L = (13.24 L)(
) = 0.01324 m³
Therefore,
W = (100413 Pa)(0.01324 m³)
<u>W = 1329.5 J = 1.33 KJ</u>
<u></u>
(b)
Using the first law of thermodynamics:
ΔU = ΔQ - W (negative W for the work done by the system)
where,
ΔU = change in internal energy of the gas = ?
ΔQ = heat added to the system = 25.6 KJ
Therefore,
ΔU = 25.6 KJ - 1.33 KJ
<u>ΔU = 24.27 KJ</u>
Answer: 2.4×10^-3 v/m
Explanation: distance between plates of capacitor (d) =5.0×10^-3m
Potential difference between plates (v) = 12v
Force on electronic charge (f) = 3.8×10^-16 N
Strength of electric field (E) =?
The formulae that relates potential difference, eoectiic field strength and distance between plates is given as
v = Ed
By substituting the parameters, we have that
12 = E × 5.0×10^-3
E = 12/ 5.0 × 10^-3
E = 2.4×10^-3 v/m
Answer:
A) a = 2.31[m/s^2]; B) t = 14.4 [s]
Explanation:
We can solve this problem using the kinematic equations, but firts we must identify the data:
Vf= final velocity = take off velocity = 120[km/h]
Vi= initial velocity = 0, because the plane starts to move from the rest.
dx= distance to run = 240 [m]
![v_{f} ^{2} =v_{i} ^{2}+2*g*dx\\where:\\v_{f}=120[\frac{km}{h} ]*\frac{1hr}{3600sg} * \frac{1000m}{1km} =33.33[m/s]\\\\Replacing\\33.33^{2}=0+2*a*(240)\\ a=\frac{11108.88}{2*240}\\ a=2.31[m/s^2]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%20%3Dv_%7Bi%7D%20%5E%7B2%7D%2B2%2Ag%2Adx%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%3D120%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A%5Cfrac%7B1hr%7D%7B3600sg%7D%20%2A%20%5Cfrac%7B1000m%7D%7B1km%7D%20%3D33.33%5Bm%2Fs%5D%5C%5C%5C%5CReplacing%5C%5C33.33%5E%7B2%7D%3D0%2B2%2Aa%2A%28240%29%5C%5C%20a%3D%5Cfrac%7B11108.88%7D%7B2%2A240%7D%5C%5C%20%20a%3D2.31%5Bm%2Fs%5E2%5D%5C%5C)
To find the time we must use another kinematic equation.
![v_{f} =v_{i} +a*t\\replacing:\\33.33=0+(2.31*t)\\t=\frac{33.33}{2.31}\\ t=14.4[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Creplacing%3A%5C%5C33.33%3D0%2B%282.31%2At%29%5C%5Ct%3D%5Cfrac%7B33.33%7D%7B2.31%7D%5C%5C%20t%3D14.4%5Bs%5D)