Answer:
F = K Q1 Q2 / R^2 force between 2 charged partices
F2 / F1 = (R1 / R2)^2 = (1 / 2.69)^2 = .139
F2 = .139 F1
Answer:
I world say A is the answer 80% sure
Answer:
Increase in temperature = 269.54 °C
Explanation:
We have equation for thermal expansion
ΔL = LαΔT
Change in length, ΔL = 0.08 m
Length, L = 56 m
Coefficient of thermal expansion, α = 5.3 x 10⁻⁶ °C⁻1
Change in temperature, ΔT = T - 253
Substituting
0.08 = 56 x 5.3 x 10⁻⁶ x (T - 253)
(T - 253) = 269.54
T = 522.54 °C
Increase in temperature = 269.54 °C
Answer:
358.9 (+/- 0.4) million years ago
Holocene Epoch, of the Quaternary Period
Devonian period
66 million years ago (prox)
521 million years ago
110,000 years ago
NW
North america became more cold when it moved NW
Explanation:
Answer : The change in enthalpy of the reaction is, -310 kJ
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given main reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the change in enthalpy of the reaction is, -310 kJ