1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
3 years ago
6

How can heat be transferred?

Physics
1 answer:
Lyrx [107]3 years ago
5 0
D because gamma rays and ultra violet rays are one of the examples of the three ways to transfer heart which is convection, radiation, and conduction.
You might be interested in
Q¹=0,07Mc Q²=2C r=1,08 cm F=.......?
Nostrana [21]
The force (F) of attraction or repulsion between two point charges (Q1 and Q2) is given by the following rule:
F = <span>(k * q1 * q2) / (r^2)  where:
</span>q1 and q2 are the charges
k is coulomb's constant = 9 x 10^9<span> N. m</span>2/ C<span>2
</span>r is the distance between the two charges.

Applying the givens in the mentioned equation, we find that:
F = (9 x 10^9<span> x 0.07 x 10^6 x 2) / (0.0108)^2 = 1.08 x 10^19 n </span> 
5 0
3 years ago
What is the magnitude of the electric field at a point midway between a −5.0μC and a +5.8μC charge 8.4cm apart? Assume no other
Alex73 [517]

Answer:

Electric Field = E = 36.848 N/C

Explanation:

In accordance with Columb's law

E = k Q1 Q2 / r.r = 8.99 x 10^9 x 5.0 x 10^-6 x 5.8 x 10^-6 / 0.084 x 0.084

= 36948.6961 x 10^-3 = 36.848 N/C

4 0
3 years ago
Narysuj wykres zależności szybkości od czasu i drogi od czasu jeśli ciało porusza się ruchem jednostajnym z szybkością 45 m/s.
murzikaleks [220]
Lett me come back imma translate this... and then ill come to help
7 0
3 years ago
Calculate the linear acceleration (in m/s2) of a car, the 0.310 m radius tires of which have an angular acceleration of 15.0 rad
love history [14]

Answer:

a) The linear acceleration of the car is 4.65\,\frac{m}{s^{2}}, b) The tires did 7.46 revolutions in 2.50 seconds from rest.

Explanation:

a) A tire experiments a general plane motion, which is the sum of rotation and translation. The linear acceleration experimented by the car corresponds to the linear acceleration at the center of the tire with respect to the point of contact between tire and ground, whose magnitude is described by the following formula measured in meters per square second:

\| \vec a \| = \sqrt{a_{r}^{2} + a_{t}^{2}}

Where:

a_{r} - Magnitude of the radial acceleration, measured in meters per square second.

a_{t} - Magnitude of the tangent acceleration, measured in meters per square second.

Let suppose that tire is moving on a horizontal ground, since radius of curvature is too big, then radial acceleration tends to be zero. So that:

\| \vec a \| = a_{t}

\| \vec a \| = r \cdot \alpha

Where:

\alpha - Angular acceleration, measured in radians per square second.

r - Radius of rotation (Radius of a tire), measured in meters.

Given that \alpha = 15\,\frac{rad}{s^{2}} and r = 0.31\,m. The linear acceleration experimented by the car is:

\| \vec a \| = (0.31\,m)\cdot \left(15\,\frac{rad}{s^{2}} \right)

\| \vec a \| = 4.65\,\frac{m}{s^{2}}

The linear acceleration of the car is 4.65\,\frac{m}{s^{2}}.

b) Assuming that angular acceleration is constant, the following kinematic equation is used:

\theta = \theta_{o} + \omega_{o}\cdot t + \frac{1}{2}\cdot \alpha \cdot t^{2}

Where:

\theta - Final angular position, measured in radians.

\theta_{o} - Initial angular position, measured in radians.

\omega_{o} - Initial angular speed, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

t - Time, measured in seconds.

If \theta_{o} = 0\,rad, \omega_{o} = 0\,\frac{rad}{s}, \alpha = 15\,\frac{rad}{s^{2}}, the final angular position is:

\theta = 0\,rad + \left(0\,\frac{rad}{s}\right)\cdot (2.50\,s) + \frac{1}{2}\cdot \left(15\,\frac{rad}{s^{2}}\right)\cdot (2.50\,s)^{2}

\theta = 46.875\,rad

Let convert this outcome into revolutions: (1 revolution is equal to 2π radians)

\theta = 7.46\,rev

The tires did 7.46 revolutions in 2.50 seconds from rest.

3 0
3 years ago
At what water temperature will additional heat energy need to be added before the temperature will change again?
Lostsunrise [7]
That would be 0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />

6 0
3 years ago
Other questions:
  • A man of mass M stands on a railroad car that is rounding an unbanked turn of radius R at speed v. His center of mass is height
    8·1 answer
  • Given the units of force, write a simple equation relating a constant force Fexerted on an object, an interval of time t during
    7·1 answer
  • Help me please the question of science.
    6·1 answer
  • One of the main differences between the intaglio and the relief printing processes is that with intaglio the ink ________ the su
    15·1 answer
  • Why do you think scientists put their results in data tables and graphs?
    5·1 answer
  • This electromagnetic wave has a very high penetrating power. It is emitted during the decay of many radioactive isotopes, such a
    9·2 answers
  • How do stars, like our sun, release energy? Is it fission or fusion?
    13·2 answers
  • If a machine exerts 12000 J of work with800 N of force the distance it covered was
    10·1 answer
  • The rubber ducky has a mass of 5 grams and a volume of 75 mL. How much water does he displace?
    13·1 answer
  • However, when is the best time to fill a balloon? Helium has a tendency to escape from any opening in the balloon and will event
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!