Answer:
√(6ax)
Explanation:
Hi!
The question states that during a time t the motorcyle underwent a displacement x at constant acceleration a starting from rest, mathematically we can express it as:
x=(1/2)at^2
Then the we need to find the time t' for which the displacement is 3x
3x=(1/2)a(t')^2
Solving for t':
t'=√(6x/a)
Now, the velocity of the motorcycle as a function of time is:
v(t)=a*t
Evaluating at t=t'
v(t')=a*√(6x/a)=√(6*x*a)
Which is the final velocity
Have a nice day!
Answer:
The tension on an object is equal to the mass of the object x gravitational force plus/minus the mass x acceleration. T = mg + ma.
Explanation:
Answer
given,
given,
small cube side = 10 cm
larger cube side = 12 cm
density of steel = 7 g/cm³
density of aluminium = 2.7 g/cm³
density of the water (ρ₁)= 1 g/cm³
Cube A and B made of steel
buoyant force of Cube A
B₁ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube B
B₂ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force of Cube C
B₃ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube D
B₄ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force acting on the cube depends on the density of the fluid
hence,
B₂ = B₄ > B₁ = B₃
So looking at the problem, you are going to want to start by finding a common denominator (1) in this case: yb, and combining like terms (2). You are then going to want to multiply both sides by (yb) as the reciprocal to the fractions (3).
1) 3x 6g
---- = ---
y b
2) 3xb 6gy
------ = -----
yb yb
3) 3xb 6gy
(yb) ------ = -----
yb yb
which becomes: 3xb = 6gy
So after this, things become much more simple, as all you have to do is isolate the (x), which can be done by dividing the entire equation by (3b).
3xb 6gy
----- = -----
3b 3b
where you will then find your answer of:
2gy
x = ----- (simplified by the GCM of 3)
b