Answer:
y₀ = 1020.3 m
Explanation:
This is a projectile launching exercise, in this case as the package is released its initial vertical velocity is zero.
y = y₀ +
t - ½ g t²
when it reaches the ground its height is zero
0 = y₀ + 0 - ½ g t²
y₀ = ½ g t²
let's calculate
y₀ = ½ 9.8 14.43²
y₀ = 1020.3 m
Answer:
B
Explanation:
Momentum is the product or multiplication of a body's mass and its speed.
Since all options have the mass and speed in the same units, there is no need for conversion.
A. 20 x 500 = 10000, B. 200 x 60 = 12000
The same goes for the rest!
Answer:
The resultant vector is 1 m/s
Explanation:
The resultant vector is 1 m/s west based on triangle law of vector addition, when two sides of a triangle is represented by two vectors, the resultant vector is the third side of the triangle.
Answer:
Vf= 7.29 m/s
Explanation:
Two force act on the object:
1) Gravity
2) Air resistance
Upward motion:
Initial velocity = Vi= 10 m/s
Final velocity = Vf= 0 m/s
Gravity acting downward = g = -9.8 m/s²
Air resistance acting downward = a₁ = - 3 m/s²
Net acceleration = a = -(g + a₁ ) = - ( 9.8 + 3 ) = - 12.8 m/s²
( Acceleration is consider negative if it is in opposite direction of velocity )
Now
2as = Vf² - Vi²
⇒ 2 * (-12.8) *s = 0 - 10²
⇒-25.6 *s = -100
⇒ s = 100/ 25.6
⇒ s = 3.9 m
Downward motion:
Vi= 0 m/s
s = 3.9 m
Gravity acting downward = g = 9.8 m/s²
Air resistance acting upward = a₁ = - 3 m/s²
Net acceleration = a = g - a₁ = 9.8 - 3 = 6.8 m/s²
Now
2as = Vf² - Vi²
⇒ 2 * 6.8 * 3.9 = Vf² - 0
⇒ Vf² = 53. 125
⇒ Vf= 7.29 m/s
Answer:
I think answer is zero
bcz momentum=mass×velocity
body was initially at rest it means its velocity is zero
30×0=0