I think, I do think.. that it is D.
Wouldn't it be simple to divide 5 from 20, that would equal 4.
4 earthworms per square meter.
Answer:
Friction can be minimized by using lubricants like oil and grease and by using ball bearing between machine parts. A substance that is introduced between two surfaces in contact, to reduce friction, is called a lubricant. Fluid friction can be minimized by giving suitable shapes to the objects moving in the fluids.
Explanation:
hope it helps
We know,
Speed = Frequency * Wavelength
Speed = 3 * 0.1 m/s [hertz = 1/sec.]
So, your final answer is 0.3 m/s
Hope this helps!!
Answer:
33.6 Ns backward.
Explanation:
Impulse: This can be defined as the product of force and time. The S.I unit of impulse is Ns.
From Newton's second law of motion,
Impulse = change in momentum
I = mΔv................................. Equation 1
Where I = impulse, m = mass of the skater, Δv = change in velocity = final velocity - initial velocity.
Given: m = 28 kg, t = 0.8 s, Δv = -1.2-0 = -1.2 m/s (Note: the initial velocity of the skater = 0 m/s)
Substituting into equation 1
I = 28(-1.2)
I = -33.6 Ns
Thus the impulse = 33.6 Ns backward.
Well, I guess you can come close, but you can't tell exactly.
It must be presumed that the seagull was flying through the air
when it "let fly" so to speak, so the jettisoned load of ballast
of which the bird unburdened itself had some initial horizontal
velocity.
That impact velocity of 98.5 m/s is actually the resultant of
the horizontal component ... unchanged since the package
was dispatched ... and the vertical component, which grew
all the way down in accordance with the behavior of gravity.
98.5 m/s = √ [ (horizontal component)² + (vertical component)² ].
The vertical component is easy; that's (9.8 m/s²) x (drop time).
Since we're looking for the altitude of launch, we can use the
formula for 'free-fall distance' as a function of acceleration and
time:
Height = (1/2) (acceleration) (time²) .
If the impact velocity were comprised solely of its vertical
component, then the solution to the problem would be a
piece-o-cake.
Time = (98.5 m/s) / (9.81 m/s²) = 10.04 seconds
whence
Height = (1/2) (9.81) (10.04)²
= (4.905 m/s²) x (100.8 sec²) = 494.43 meters.
As noted, this solution applies only if the gull were hovering with
no horizontal velocity, taking careful aim, and with malice in its
primitive brain, launching a remote attack on the rich American.
If the gull was flying at the time ... a reasonable assumption ... then
some part of the impact velocity was a horizontal component. That
implies that the vertical component is something less than 98.5 m/s,
and that the attack was launched from an altitude less than 494 m.