Saludos!
Respuesta:28,64 m/s.
Explicación:Datos:
Altura o distancia recorrida: 40 m
Vo: 6 m/s
Aceleración de la gravedad: 9,81 m/s²
El ejercicio puede ser resuelto facilmente utilizando la siguiente formula, sin embargo es posible realizarlo utilizando formulas diferentes.
Entonces tenemos que:

Es importante saber que al estar lanzando el ladrillo hacia abajo, el sentido del movimiento sigue el sentido de la gravedad, es decir es necesario que tomes el valor de la gravedad como positivo (+) y no negativo (-) como normalmente se usa.
Sustituyendo tenemos que:

Que tengas un buen día!
Given that:
Energy of bulb (Work ) = 30 J,
Time (t) = 3 sec
The power consumption = ?
We know that, Power can be defined as rate of doing work
Power (P) = Work(Energy supplied) ÷ time
= 30 ÷ 3
= 10 Watts
<em> The power consumption is 10 W.</em>
Answer:
138.3 days
Explanation:
Given that a Planet Ayanna has a radius of 6.2 X 10%m and orbits the star named Dayli in 98 days. A new neighboring planet Clayton J-21 has been discovered and has a radius of 7.8 X 10 meters.
The period of time for Clayton J-21 to orbit Dayli can be calculated by using Kepler law.
T^2 is proportional to r^3
That is,
T^2/r^3 = constant
98^2 / 62^3 = T^2 / 78^3
Make T^2 the subject of formula.
T^2 = 98^2 / 62^3 × 78^3
T^2 = 19123.2
T = sqrt ( 19123.2 )
T = 138.2867 days
Therefore, the period of time for Clayton J-21 to orbit Dayli is 138.3 days approximately.
Answer:
120 miles per hour.
Explanation:
We need to find the time it takes my parents to drive home from the cottage. Since my father drives at 60 miles per hour, and the cottage is 240 miles from our home, and distance = speed × time. So, time = distance/speed = 240 mi/60 mi/h = 4 h.
So, it will take my father 4 hours to drive home from the cottage.
Since I have 2 hours to prepare for the party, the time left for me to drive to the cottage is 4 - 2 hrs = 2 hrs.
So, I'm supposed to drive to the cottage in at most 2 hours.
The speed at which I must drive in this time period is thus, speed = distance/time = 240 miles/2 hours = 120 miles per hour.
So, I must drive at a minimum speed of 120 miles per hour.