I believe the answer is the poles of the magnet.
Answer:
5.52atm
Explanation:
Using the pressure law formula:
P1/T1 = P2/T2
Where;
P1 = initial pressure (atm)
P2 = final pressure (atm)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the question, the following information were provided;
P1 = 4.72 atm
P2 = ?
T1 = -3.50°C = -3.50 + 273 = 269.5K
T2 = 42°C = 42 + 273 = 315K
Using P1/T1 = P2/T2
4.72/269.5 = P2/315
CROSS MULTIPLY
4.72 × 315 = 269.5 × P2
1,486.8 = 269.5P2
P2 = 1,486.8 ÷ 269.5
P2 = 5.52atm
Answer:
The wavelength for the transition from n = 4 to n = 2 is<u> 486nm</u> and the name name given to the spectroscopic series belongs to <u>The Balmer series.</u>
Explanation
lets calculate -
Rydberg equation- 
where ,
is wavelength , R is Rydberg constant (
),
and
are the quantum numbers of the energy levels. (where
)
Now putting the given values in the equation,


Wavelength 
=
= 486nm
<u> Therefore , the wavelength is 486nm and it belongs to The Balmer series.</u>
Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>