Inner planets are rockier and outer planets are gaseous. Hope this helps! Can I have brainliest please
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84

and replacing in the expression Q = m*L you get:
Q=172 g*84 
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
A mile.
For reference, it's about 1,607 or so meters, and 1km is 1,000.
Answer:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)
Explanation:
This question is asking to write and balance an equation between between aqueous sodium carbonate (Na2CO3) and aqueous nitric acid (HNO3). The equation is as follows:
HNO3 (aq) + Na2CO3 (aq) → NaNO3 (aq) + CO2 (g) + H2O (l)
However, this equation is not balanced as the number of atoms of each element must be the same on both sides of the equation. To balance the equation, one will make use of coefficients as follows:
2HNO3 (aq) + Na2CO3 (aq) → 2NaNO3 (aq) + CO2 (g) + H2O (l)