La longitud <em>final</em> del puente de acero es 100.018 metros.
Asumamos que la dilatación <em>térmica</em> experimentada por el puente de acero es <em>pequeña</em>, de modo que podemos emplear la siguiente aproximación <em>lineal</em> para determinar la longitud <em>final</em> del puente de acero (
), en metros:
(1)
Donde:
- Longitud inicial del puente, en metros.
- Coeficiente de dilatación, sin unidad.
- Temperatura inicial, en grados Celsius.
- Temperatura final, en grados Celsius.
Si tenemos que
,
,
y
, entonces la longitud final del puente de acero es:
![L = (100\,m)\cdot [1+(11.5\times 10^{-6})\cdot (24\,^{\circ}C - 8\,^{\circ}C)]](https://tex.z-dn.net/?f=L%20%3D%20%28100%5C%2Cm%29%5Ccdot%20%5B1%2B%2811.5%5Ctimes%2010%5E%7B-6%7D%29%5Ccdot%20%2824%5C%2C%5E%7B%5Ccirc%7DC%20-%208%5C%2C%5E%7B%5Ccirc%7DC%29%5D)

La longitud <em>final</em> del puente de acero es 100.018 metros.
Para aprender más sobre dilatación térmica, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/24953416
Answer. Explanation: Frequency of the sound decreases and the speed of sound becomes 346m/s from near about 1500 m/s.
a. The restoring force in the spring has magnitude
F[spring] = k (0.79 m)
which counters the weight of the mass,
F[weight] = (0.46 kg) g = 4.508 N
so that by Newton's second law,
F[spring] - F[weight] = 0 ⇒ k = (4.508 N) / (0.79 m) ≈ 5.7 N/m
b. Using the same equation as before, we now have
F[weight] = (0.75 kg) g = 7.35 N
so that
(5.7 N/m) x - 7.35 N = 0 ⇒ x = (7.35 N) / (5.7 N/m) ≈ 1.3 m
Answer:
3.97305 m
Explanation:
a = Acceleration due to gravity = 9.81 m/s²
If a jump lasts for 1.8 seconds this means that from the moment when the person leaves the ground till the person touches the ground again it takes 1.8 seconds. So, maximum height reached will be at half the time of the jump i.e., 0.9 seconds.
u = Initial velocity = 0
Equation of motion

So, height of the jump is 3.97305 m.