We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:

Where

differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question,

is the distance between both rays.


At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:

For red we have:

We finally have:
Answer:
What is the power of focus from the eye when a subject looks from 20 to 500 from its eye?
Explanation:
Is that your question?
Answer:
Explanation:
1) Hypermetropia (better known as Farsighted- this is why nearby objects seem blurry for him)
2) In such instances, image are typically formed farther from the near point
3) Such defects are quite common so there are common procedures such as using convex lens which can restore the sight to normal.
Answer:
400000
Explanation:
So first solve one part:
(3.25 * 10^5)
(3.25 * 100,000)
= 325000
Then solve the next part:
(7.5 * 10^4)
(7.5 * 10000)
= 75000
Now lastly, add the two answers:
325000 + 75000 = 400000
Therefore,
(3.25 x 10^5) + (7.5 x 10^4) = 400000