Answer:
Infinite pairs of numbers
1 and -1
8 and -8
Step-by-step explanation:
Let x³ and y³ be any two real numbers. If the sum of their cube roots is zero, then the following must be true:
![\sqrt[3]{x^3}+ \sqrt[3]{y^3}=0\\ \sqrt[3]{x^3}=- \sqrt[3]{y^3}\\x=-y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E3%7D%2B%20%5Csqrt%5B3%5D%7By%5E3%7D%3D0%5C%5C%20%5Csqrt%5B3%5D%7Bx%5E3%7D%3D-%20%5Csqrt%5B3%5D%7By%5E3%7D%5C%5Cx%3D-y)
Therefore, any pair of numbers with same absolute value but different signs fit the description, which means that there are infinite pairs of possible numbers.
Examples: 1 and -1; 8 and -8; 27 and -27.
9514 1404 393
Answer:
4
Step-by-step explanation:
To find the value of g(7), locate 7 on the x-axis. Follow the grid line upward until it meets the graph (blue line). At that point, follow the grid line to the left until it meets the y-axis. Read the value from the scale on the y-axis.
g(7) = 4
Answer:
The formula for the volume of a pyramid is one third of the length times the width times the height.
Step-by-step explanation:
thank me later