1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
2 years ago
13

Which of the following is an example of Newton's Third Law?* O A stack of pennies will not move unless you flick them over. O Fa

lling off of a skateboard after you run into a curb A ball hits the ground and the ground pushes up on it with the same force​
Physics
1 answer:
Morgarella [4.7K]2 years ago
5 0

Answer:

A ball hits the ground and the ground pushes up on it

Explanation:

Newton's third law basically states that for every action, there's a reaction.

a ball hitting the ground would be the action. the ground pushing up on it with the same force is the reaction.

Hope this Helps!!! :)

You might be interested in
Water of density 1000 kg/m3 falls without splashing at a rate of 0.373 L/s from a height of 40.5 m into a 0.64 kg bucket on a sc
Sphinxa [80]

Answer:

       F_scale = 20.18 N

Explanation:

The scale reading corresponds to two factors, the first the weight of the water in the container and the second the force of the liquid that is falling at the moment of reading.

* Let's find the amount of liquid in the container for a time of t = 2.93 s

Let's use a direct proportion rule. If 0.373 l falls in one second at t = 2.93 s, how many liters are there

        V_{water} = 2.93 s (0.373 l / 1s) = 1.09 l

        V_{water} = 1.09 10⁻³ m³

the amount of water is

       ρ = m / V

       m = ρ V

       m = 1000 1.09 10⁻³

       m = 1.09 kg

so the weight of the liquid in the container for this time is

       W = mg

       W = 1.09 9.8

       W = 10.68 N

* Let's look for the force of the falling jet

Let's use Bernoulli's equation, where the subscript 1 is for the container and the subscript 2 is for the water at a height h

        P₁ + 1/2 ρ g v₁² + ρ g y₁ = P₂ + 1/2  ρ g v₂² + ρ g y₂

In this case, the water falls freely, so the external pressure is atmospheric.

         P₂ = P_{atm}

since they indicate that the water falls, we assume that its initial velocity is zero v₂ = 0

let's use kinematics to find the speed of a drop when it reaches the container y = 0

         v² = v₀² - 2 g (y-y₀)

         v = \sqrt{0 -2 g ( 0-y_o)}

let's calculate

         v = √(2 9.8 40.5)

         v = 28.17 m / s

this is the speed in the container v₁ = 28.17 m / s

the height from where it falls is y₂ = 40.5 and reaches the container y₁ = 0

we substitute in Bernoulli's equation

         P₁ +1/2 ρ g v₁² + 0 = P_{atm} + 0 + ρ g y₂

         P₁ + ½ ρ g v₁² = P_{atm} + ρ g y₂

         P₁ = P_{atm} + ρ g y₂ - ½ ρ g v₁²

         P₁ = 1 10⁵ + 1000 9.8 40.5 - ½ 1000 28.17²

         P₁ = 1 10⁵ + 3.97 10⁵ - 3.69 10⁵

         P₁ = 1.28 10⁵ Pa

The definition of Pressure is

         P = F / A

         F = P A

We must suppose a time to carry out the reading suppose an average time of the modern equipment t = 0.1 s, in this time how much is now arriving

          m₂ = 0.373 0.2 = 0.0746 l = 0.0746 10⁻³ m³

the volume is V = A l

if the length of l = 1 m

A = 0.0746 10⁻³ m³ = 7.45 10⁻⁵ m²

the force of this jet is

            F = P A

            F = 1.28 10⁵  7.46 10⁻⁵

            F = 9.5 N

with these data let's use the equilibrium equation

           F_ scale -W - F = 0

           F_scale = W + F

           F_scale = 10.682 + 9.5

           F_scale = 20.18 N

4 0
2 years ago
A solid non-conducting sphere of radius R carries a charge Q distributed uniformly throughout its volume. At a radius r (r <
Svet_ta [14]

Answer:  

Hence the answer is E inside = KQr_{1} /R^{3}.

Explanation:  

E inside = KQr_{1} /R^{3}  

so if r1 will be the same then  

E  \begin{bmatrix}Blank Equation\end{bmatrix} proportional to 1/R3  

so if R become 2R  

E becomes 1/8 of the initial electric field.

8 0
2 years ago
Read 2 more answers
From a window that is 20 m from the ground a stone with a speed of 10m / s is thrown vertically upwards. Calculate:
Oduvanchick [21]

a)

consider the motion in upward direction as positive and down direction as negative

Y₀ = initial position of the stone = 20 m

v₀ = initial velocity of the stone = 10 m/s

a = acceleration = - 9.8 m/s²

Y = final position of the stone when it reach the maximum height

v = final velocity at the maximum height = 0 m/s

t = time taken to reach the maximum height

Using the equation

v² = v₀² + 2 a (Y - Y₀)

0² = 10² + 2 (- 9.8) (Y - 20)

Y = 25.1 m


also using the equation

v = v₀ + a t

inserting the values

0 = 10 + (- 9.8) t

t = 1.02 sec


b)

consider the motion in upward direction as positive and down direction as negative

Y₀ = initial position of the stone = 20 m

v₀ = initial velocity of the stone = 10 m/s

a = acceleration = - 9.8 m/s²

Y = final position of the stone when it reach the ground = 0 m

t = time taken to reach the ground

Using the equation

Y = Y₀ + v₀ t + (0.5) a t²

0 = 20 + 10 t + (0.5) (- 9.8) t²

t = 3.3 sec

3 0
3 years ago
Define linear expansivity
lidiya [134]

Linear expansivity is a type of thermal expansion. It is described by a fraction that represents the fractional increase in length of a thin beam of a material exposed to a temperature increase of one degree Celsius. ... Linear expansivity is used in many real world applications.

8 0
3 years ago
Read 2 more answers
If the heating curve is reversed, what would best describe the boiling point?
Slav-nsk [51]

Answer:

point of condensation

Explanation:

7 0
3 years ago
Other questions:
  • What is the shape of the earth's orbit around the sun?
    14·2 answers
  • How do I determine valence electrons from the periodic table
    15·2 answers
  • Holden is trying to turn man the velocity of his car, he went 20 meters east, turned around and left 40 meters less, he turned t
    14·1 answer
  • Cathode ray tubes (CRTs) used in old-style televisions have been replaced by modern LCD and LED screens. Part of the CRT include
    11·1 answer
  • Crickets Chirpy and Milada jump from the top of a vertical cliff. Chirpy drops downward and reaches the ground in 2.70 s, while
    12·1 answer
  • The mountains on the Moon were formed by what process?
    14·1 answer
  • Which is an example of chemical energy from batteries to electromagnetic ( light ) energy?
    9·1 answer
  • Find the work done after the chair moved 4.40m along the ramp
    14·1 answer
  • A massless, rigid board is placed across two bathroom scales that are separated by a distance of 1.71 m. A person lies on the bo
    5·1 answer
  • a student that weighs 436 n is standing on a scale in an elevator and notices that the scale reads 498 n. from this information,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!