The volume could be calculated by using <span>V = n RT / P </span>
In which V = Volume
n = number of Moles
R= The Gas constant
T = Temperature (ideally this would be in Kelvin, but i don't see it in the option)
P = Pressure
I believe the answer is
<span>V = (1.5mol) (0.08205 L*kPa/K*mol) (22Celsius)/100 kPa
</span>
Answer:
1.15 hours
Explanation:
If they are going 100 kilometers an hour, and they need to go 115 k, then do 115/100 which is 1.15 which is the time
Answer:
C
Explanation:
add them together and multiply by 2
When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium<span> is reached, i.e. until their temperatures are equal. We say that </span>heat<span>flows from the hotter to the cooler object. </span><span>Heat is energy on the move.</span> <span>
</span>Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
They are called isotopes.
Example of isotopes are Hydrogen and deuterium.
Hydrogen is 1 proton and 0 neutrons.
Deuterium is 1 proton and 1 neutron