Answer:
Since molarity is defined as moles of solute per liter of solution, we need to find the number of moles of nitric acid, and the volume of solution.
molar mass of nitric acid (HNO3) = 1 + 14 + (3x16) = 15 + 48 = 63 g/mole
1.50 g/ml x 1000 ml = 1500 g/liter
1500 g/liter x 0.90 = 1350 g/liter of pure HNO3 (the 0.9 is to correct for the fact that it is 90% pure)
1350 g/liter x 1 mole/63 g = 21.43 moles/liter = 21 Molar HNO3
= 21 Molar of HNO3
Answer:
1230
Explanation:
1.20×1025=1230 is your answer
Answer:
5.625 moles of oxygen, O₂.
Explanation:
The balanced equation for the reaction is given below:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ required to react with 7.5 moles of aluminum, Al. This can be obtained as illustrated below:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Therefore, 7.5 moles of Al will react with = (7.5 × 3)/4 = 5.625 moles of O₂.
Thus, 5.625 moles of O₂ is needed for the reaction.
Answer is: <span>concentration of NOCl is 3.52 M.
</span>
Balanced chemical reaction: 2NOCl(g) ⇄ 2NO(g) + Cl₂<span>(g).
Kc = 8.0.
</span>[NOCl] = 1.00 M; equilibrium concentration.
[NO] = x.
[Cl₂] = x/2; equilibrium concentration of chlorine.<span>
Kc = </span>[Cl₂] ·[NO]² / [NOCl].
8.00 = x/2 · x² / 1.
x³/2 = 8.
x = ∛16.
x = 2.52 M.
co(NOCl) = [NOCl] + x.
co(NOCl) = 1.00 M + 2.52 M.
co(NOCl) = 3.52 M; the initial concentration of NOCl.
Answer:
a compound is a syllable in the outer world
Explanation: