Answer:
0.80865 Hz
1.23662 seconds
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
l = Length of arm = 0.57 m
Length of simple pendulum is given by

The frequency is given by

The frequency is 0.80865 Hz
The time period is given by

The time period is 1.23662 seconds
There are two conditions necessary for total internal reflection, which is when light hits the boundary between two mediums and reflects back into its original medium:
Light is about to pass from a more optically dense medium (slower) to a less optically dense medium (faster).
The angle of incidence is greater than the defined critical angle for the two mediums, which is given by:
θ = sin⁻¹(
/
)
Where θ = critical angle,
= refractive index of faster medium,
= refractive index of slower medium.
Choice C gives one of the above necessary conditions.
Answer:
Wave speed, frequency and wavelength in refraction
Explanation:
The diagram shows that as a wave travels into a denser medium, such as water, it slows down and the wavelength decreases. Although the wave slows down, its frequency remains the same, due to the fact that its wavelength is shorter. Hope this helps :>
Answer:
a)5.88J
b)-5.88J
c)0.78m
d)0.24m
Explanation:
a) W by the block on spring is given by
W=
kx² =
(530)(0.149)² = 5.88 J
b) Workdone by the spring = - Workdone by the block = -5.88J
c) Taking x = 0 at the contact point we have U top = U bottom
So, mg
=
kx² - mgx
And,
= (
kx² - mgx
)/(mg) =
]/(0.645x9.8)
= 0.78m
d) Now, if the initial initial height of block is 3
= 3 x 0.78 = 2.34m
then,
kx² - mgx - mg
=0
(530)x² - [(0.645)(9.8)x] - [(0.645)(9.8)(2.34) = 0
265x² - 6.321x - 14.8 = 0
a=265
b=-6.321
c=-14.8
By using quadratic eq. formula, we'll have the roots
x= 0.24 or x=-0.225
Considering only positive root:
x= 0.24m (maximum compression of the spring)