Answer:
Because winding roads have a gentle slope on hills, so it's easy to climb it than a steepy.
The answer is Carbon. Beyond being the only element listed here that is located in the second row, it is also in the fourteenth column of the table if you count from left to right. Hope this helps!
Answer:
A, B, F
Explanation:
I believe these are the answers, sorry if it is incorrect.
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .
Answer:
0.143 m
Explanation:
The relationship between force applied on a string and stretching of the spring is given by Hooke's law:

where
F is the force exerted on the spring
k is the spring constant of the spring
x is the stretching of the spring from its equilibrium position
In this problem, we have:
F = 20 N is the force applied on the spring
k = 140 N/m is the spring constant
Solving for x, we find how far the spring will stretch:
