The distance between slit and the screen is 1.214m.
To find the answer, we have to know about the width of the central maximum.
<h3>How to find the distance between slit and the screen?</h3>
- It is given that, wavelength 560 nm passes through a slit of width 0. 170 mm, and the width of the central maximum on a screen is 8. 00 mm.
- We have the expression for slit width w as,

where, d is the distance between slit and the screen, and a is the slit width.
- Thus, distance between slit and the screen is,

Thus, we can conclude that, the distance between slit and the screen is 1.214m.
Learn more about the width of the central maximum here:
brainly.com/question/13088191
#SPJ4
Answer:
Initial velocity, U = 4.5m/s
Explanation:
Given the following data;
Final velocity, v = 12m/s
Time, t = 5 seconds
Acceleration, a = 1.5m/s²
To find the initial velocity, we would use the first equation of motion.
Where;
V is the final velocity.
U is the initial velocity.
a is the acceleration.
t is the time measured in seconds.
Substituting into the equation, we have;
12 = U + 1.5*5
12 = U + 7.5
U = 12 - 7.5
Initial velocity, U = 4.5m/s
Answer:
The table can be used to predict the properties of elements, even those that have not yet been discovered. Columns (groups) and rows (periods) indicate elements that share similar characteristics.
The table makes trends in element properties apparent and easy to understand.
The table provides important information used to balance chemical equations. Atoms are important because they form the basic building blocks of all visible matter in the universe. There are 92 types of atoms that exist in nature, and other types of atoms can be made in the lab. The different types of atoms are called elements. Hydrogen, gold and iron are examples of elements comprised of unique types of a single kind of atom.
Explanation:
The correct answer is C. Final Velocity
Hope this helped!