<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
Answer:
The velocity of a falling object
Explanation:
The positive X axis is towards right and positive Y axis is towards up, so North direction is positive
A vector with less than 1 magnitude is not negative, because its magnitude may be in between 0 and 1 which is positive vector.
Any vector whose magnitude is greater than 1 is never be a negative vector.
The velocity of a falling object is towards bottom, that is towards negative Y axis. So that vector is negative.
Answer:
hi mate,
interesting question, first of all the pressure is determined by using the following formula:
Pg = p * G * h
where p is the density of the liquid, G is the gravity and h is the height difference, in you case you have:
p = 1015 kg/m3
G = 9.8m/s2
h = 0.085 m
insert these values into the equation above:
Pg = 1015 kg/m3 * 9.8m/s2 * 0.085 m = 849.81 kg·m-1·s-2 or 849.81 pascal
hope it helps, :-)
please mark me as brainliest
Explanation:
Activation energy and reaction rate
The activation energy of a chemical reaction is closely related to its rate. Specifically, the higher the activation energy, the slower the chemical reaction will be. ... The released energy helps other fuel molecules get over the energy barrier as well, leading to a chain reaction.
Answer:
a). 87.5 mA or
A
b). 1.78 
Explanation:

n the number of free electrons is 28 in text reference and if they don't give q is take as the charge of electron.
a).
A
b).

