Answer:
I think it is 4 to 3
Step-by-step explanation:
if I am wrong I'm sorry
Answer:
x=6
Step-by-step explanation:
/AB/=2x+12
/BC/=5x+10
3x+2=5x-10 subtract 2 from both sides
3x=5x-12 subtract 5x from both sides
-2x=-12 divide both sides by -2x
x =6
*The complete question is in the picture attached below.
Answer:
756πcm³
Step-by-step Explanation:
The volume of the solid shape = volume of cone + volume of the hemisphere.
==> 270πcm³ + ½(4/3*π*r³)
To calculate the volume of the hemisphere, we need to get the radius of the hemisphere = the radius of the cone.
Since volume of cone = 270πcm³, we can find r using the formula for the volume of cone.
==> Volume of cone = ⅓πr²h
⅓*π*r²*10 = 270π
⅓*10*r²(π) = 270 (π)
10/3 * r² = 270
r² = 270 * ³/10
r² = 81
r = √81
r = 9 cm
Thus, volume of hemisphere = ½(4/3*π*r³)
==> Volume of hemisphere = ½(⁴/3 * π * 9³)
= ½(972π)
Volume of hemisphere = 486πcm³
Volume of the solid shape
= volume of cone + volume of the hemisphere.
==> 270πcm³ + 486πcm³
= 756πcm³
Answer:
Domain: (-∞, ∞)
Range: (-∞, ∞)
Step-by-step explanation:
The domain are the x-values included in the function (the horizontal axis).
The range are the y-values included in the function (the vertical axis).
The two arrows on the ends of the line (pointing upwards and downwards respectively) indicate that the function goes in those direction for infinity. Therefore, if there are an infinite amount of y-values, the range is (-∞, ∞).
While the slope is quite steep, there is still a slope and slowly "expands" the line on the horizontal axis. Because there is no limit to the y-values, the domain will also expand infinitely. Therefore, the domain is also (-∞, ∞).
Answer:
D
Step-by-step explanation:
A function is where each input (here, the input is x) corresponds to exactly one output (here, the output is y). In other words, if a function is graphed, we should be able to draw a vertical line through every single part of it that will intersect it at only one place.
Let's examine each choice.
(A) Well, if we draw a vertical line through the graph, it will obviously intersect the entire line - which is an infinite number of intersections, so this is not a function.
(B) If we draw a vertical line through the portion of the graph that lies near the positive x-axis, we note that it will intersect twice, so this is not a function.
(C) If we strategically draw a vertical line through the y-axis, we see it will intersect two times, so this is not a function.
(D) We can draw a vertical line through any portion of this graph and know that it will only intersect once.
Therefore, the answer is D.