Proteins are made from long chains of smaller molecules called amino acids. These long chains are folded into particular shapes. This is important in relation to how antibodies and enzymes work.
Enzymes are biological catalysts. There are optimum temperatures and pH values at which their activity is greatest. Enzymes are also proteins. If the shape of an enzyme changes, it may no longer work (it is said to have been 'denatured'). maybe right?
During selection of indicator. We choose an indicator which have pH range equivalent to the pH change of reaction to give better result and better observation.
So there are some different indicator are used in table 2 as compared to the table 1.
- Alizarin and phenolphthalein are basic indicator and their pH range is more than 8 so they are used in table 2
<span />
Missing in your question :
Ksp of(CaCO3)= 4.5 x 10 -9
Ka1 for (H2CO3) = 4.7 x 10^-7
Ka2 for (H2CO3) = 5.6 x 10 ^-11
1) equation 1 for Ksp = 4.5 x 10^-9
CaCO3(s)→ Ca +2(aq) + CO3-2(aq)
2) equation 2 for Ka1 = 4.7 x 10^-7
H2CO3 + H2O → HCO3- + H3O+
3) equation 3 for Ka2 = 5.6 x 10^-11
HCO3-(aq) + H2O(l) → CO3-2 (aq) + H3O+(aq)
so, form equation 1& 2&3 we can get the overall equation:
CaCO3(s) + H+(aq) → Ca2+(aq) + HCO3-(aq)
note: you could get the overall equation by adding equation 1 to the inverse of equation 3 as the following:
when the inverse of equation 3 is :
CO3-2 (aq) + H3O+ (aq) ↔ HCO3- (aq) + H2O(l) Ka2^-1 = 1.79 x 10^10
when we add it to equation 1
CaCO3(s) ↔ Ca2+(aq) + CO3-2(aq) Ksp = 4.5 x 10^-9
∴ the overall equation will be as we have mentioned before:
when H3O+ = H+
CaCO3(s) + H+(aq) ↔ Ca2+ (aq) + HCO3-(aq) K= 80.55
from the overall equation:
∴K = [Ca2+][HCO3-] / [H+]
when we have [Ca2+] = [HCO3-] so we can assume both = X
∴K = X^2 / [H+]
when we have the PH = 5.6 so we can get [H+]
PH = - ㏒[H+]
5.6 = -㏒[H]
∴[H] = 2.5 x 10^-6
so, by substitution on K expression:
∴ 80.55 = X^2 / (2.5 x10^-6)
∴X = 0.0142
∴[Ca2+] = X = 0.0142
Answer: -
C. The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
The kinetic energy of gas molecules increase with the increase in the temperature of the gas. With the increase in kinetic energy, the gas molecules also move faster. Thus with the increase of temperature, the speed of the molecules increase.
Temperature of first hydrogen gas sample is 10 °C.
10 °C means 273+10 = 283 K
Thus first sample temperature = 283 K
The second sample temperature of the hydrogen gas is 350 K.
Thus the temperature is increased.
So both the kinetic energy and speed of molecules is more for the hydrogen gas sample at 350 K.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Hence the answer is C.