A = (1/2) b * h
h = b - 5
42 = (1/2) * b * (b - 5)
42 = (1/2) * b^2 - 5b
multiply both sides by 2 to clear the fraction (1/2)
2(42) = 2(1/2) *b^2 - 5b
84 = b^2 -5b
Since this is a quadratic equation, subtract 84 from both sides so that it is set = to zero.
b^2 - 5b - 84 = 0
Now factor.
(b - 12)(b + 5) = 0
b - 12 = 0; b = 12
b + 5 = 0; b = -5
You can't have a negative length so the answer is 12m
To check the answer:
A = (1/2) * 12* 7
A = 42 m^2
Answer:
5 scoops
Step-by-step explanation:
If the feeder already has 1/2 cups in it, Porter will need to put 5 scoops in because 5/10= 1/2. 5 is half of ten
Hope this helps!
Solve the following system using elimination:
{-2 x + 2 y + 3 z = 0 | (equation 1)
{-2 x - y + z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Subtract equation 1 from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x - 3 y - 2 z = -3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Multiply equation 2 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{2 x + 3 y + 3 z = 5 | (equation 3)
Add equation 1 to equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+3 y + 2 z = 3 | (equation 2)
{0 x+5 y + 6 z = 5 | (equation 3)
Swap equation 2 with equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+3 y + 2 z = 3 | (equation 3)
Subtract 3/5 × (equation 2) from equation 3:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - (8 z)/5 = 0 | (equation 3)
Multiply equation 3 by 5/8:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y - z = 0 | (equation 3)
Multiply equation 3 by -1:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y + 6 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 6 × (equation 3) from equation 2:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+5 y+0 z = 5 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 2 by 5:
{-(2 x) + 2 y + 3 z = 0 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Subtract 2 × (equation 2) from equation 1:
{-(2 x) + 0 y+3 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
v0 x+0 y+z = 0 | (equation 3)
Subtract 3 × (equation 3) from equation 1:
{-(2 x)+0 y+0 z = -2 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Divide equation 1 by -2:
{x+0 y+0 z = 1 | (equation 1)
{0 x+y+0 z = 1 | (equation 2)
{0 x+0 y+z = 0 | (equation 3)
Collect results:
Answer: {x = 1, y = 1, z = 0
Answer:
B
Step-by-step explanation:
-- The trains start moving at the same time.
-- The space between them is initially 252.5 miles.
-- They reduce the distance between them at the rate of (124.7+253.5)=378.2mph.
-- It will take them (252.5 / 378.2) = 0.6676 hour to meet.
That's 40min 3.49sec .
-- After tooting and puffing toward each other for 8 minutes, they still have <em>32min 3.49sec</em> to go before they meet each other. We're all hoping that they're on different tracks.