1) when litmus paper is dipped into a acid solution, the litmus paper turns red.
<span>2) acid reacts with metals to produce hydrogen gas </span>
<span>3) the equation of an acidic substance begins with the letter 'H' such as HCl </span>
The transitions which fall to the lowest principle position release the greatest energies. In this case, this would be the transition from the 5p to the 3s orbital (a Paschen transition).
Hope this helps!
Here we have to calculate the amount of
ion present in the sample.
In the sample solution 0.122g of
ion is present.
The reaction happens on addition of excess BaCl₂ in a sample solution of potassium sulfate (K₂SO₄) and sodium sulfate [(Na)₂SO₄] can be written as-
K₂SO₄ = 2K⁺ + 
(Na)₂SO₄=2Na⁺ + 
Thus, BaCl₂+
= BaSO₄↓ + 2Cl⁻ .
(Na)₂SO₄ and K₂SO₄ is highly soluble in water and the precipitation or the filtrate is due to the BaSO₄ only. As a precipitation appears due to addition of excess BaCl₂ thus the total amount of
ion is precipitated in this reaction.
The precipitate i.e. barium sulfate (BaSO₄)is formed in the reaction which have the mass 0.298g.
Now the molecular weight of BaSO₄ is 233.3 g/mol.
We know the molecular weight of sulfate ion (
) is 96.06 g/mol. Thus in 1 mole of BaSO₄ 96.06 g of
ion is present.
Or. we may write in 233.3 g of BaSO₄ 96.06 g of
ion is present. So in 1 g of BaSO₄
g of
ion is present.
Or, in 0.298 g of the filtered mass (0.298×0.411)=0.122g of
ion is present.
For a reaction to occur, there should be mobility of ions in reactant side.
If the reactant is larger, its mobility will be lesser than that of smaller ones.
So reactants smaller in size have higher mobility which makes reaction faster.
Hence D is the correct option.
Hope this helps, have a great day/night ahead!