Answer:
41 g
Explanation:
We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.
pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]
pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]
log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]
log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40
[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M
We can find the mass of NaC₆H₅COO using the following expression.
M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L
mass NaC₆H₅COO = 41 g
SrSo4 = Sr(2+) + SO4(2-)
Let’s say that the initial concentration of SrSo4 was 1. ( or we have 1 mole of this reagent).
When The reaction occurs part of SrSo4is dissociated. And we get X mole Sr(2+) and So4(2-).
Ksp=[Sr(2+)]*[SO4(2-)]
X^2=3.2*10^-7
X=5.6*10^-4
Answer:
The force of gravity acting on the car is <u>9800 N vertically downward.</u>
Explanation:
Given:
Mass of the car given is 1000 kg.
We know that the force of gravity is the force applied by the center of Earth on any body. The force of gravity is also called the weight of the body and always act towards the center of the Earth.
From Newton's second law, we know that the force acting on a body is equal to its mass and acceleration.
Here, the acceleration acting on the car is due to gravity and thus has a constant value of 9.8 m/s² on the surface of Earth.
Therefore, the force of gravity acting on the car is given using the Newton's second law as:
Force of gravity = Mass of car
Acceleration due to gravity.
Force of gravity = (1000 kg)
(9.8 m/s²)
Force of gravity = 9800 N [1 kg.m/s² = 1 N]
Therefore, the force of gravity acting on the car is 9800 N vertically downward.
A compound is a substance that can be separated into simpler substances only by chemical means.
we can differentiate a heterozygous individual from a homozygote by analyzing their alleles. If the alleles in the homologous chromosomes are the same, we say that it is a homozygote. If the alleles are different, the individual is heterozygous.