Atomic mass W = 183.84 u.m.a
1 mole --------- 183.84
1.4 moles ---- ?
1.4 x 183.84 / 1 = 257.376 g
hope this helps!
Answer:
The farther away the planet the slower the revolution around the earth. the closer the faster.
Explanation:
its like a tetherball pole when it wraps around it gets closer and spins faster and faster untill it stops. Brainliest?
Answer:
See explanation below
Explanation:
In order to calculate this, we need to use the following expression to get the concentration of the base:
MaVa = MbVb (1)
We already know the volume of NaOH used which is 13.4473 mL. We do not have the concentration of KHP, but we can use the moles. We have the mass of KHP which is 0.5053 g and the molecular formula. Let's calculate the molecular mass of KHP:
Atomic weights of the elements to be used:
K = 39.0983 g/mol; H = 1.0078 g/mol; C = 12.0107 g/mol; O = 15.999 g/mol
MM KHP = (1.0078*5) + (39.0983) + (8*12.0107) + (4*15.999) = 204.2189 g/mol
Now, let's calculate the mole of KHP:
moles = 0.5053 / 204.2189 = 0.00247 moles
With the moles, we also know that:
n = M*V (2)
Replacing in (1):
n = MbVb
Now, solving for Mb:
Mb = n/Vb (3)
Finally, replacing the data:
Mb = 0.00247 / (13.4473/1000)
Mb = 0.184 M
This would be the concentration of NaOH
1 mol = 6.022 x 10²³ atoms
In order to find how many atoms, dimly multiply the amount of moles you have by 6.022 x 10²³ or Avogadro's number.
So you have 1.75 mol CHC1₃ x (6.022x10²³) = 1.05385 x 10²⁴ atoms of CHCl₃
But now you have to round because of the rules of significant figures so you get 1.05 x 10²⁴ atoms of CHCl₃