Answer:
Explanation:
As we know that
......eq (1)
we will calculate the pH of OH- and then we will calculate the pH of H+
So p[OH-]
Solving the right side of the equation, we get
p[OH-]
Now we know that
Substituting the value of pOH in the above equation, we get -
Explanation:
A ____Chemical Reaction_______________________ is a well defined example of a chemical change. A chemical ___ _____chemical equation___________________ can be used to show the changes that occur in a chemical reaction. In a chemical reaction, the substance on the left side of the arrow are the starting substance. These substances are called ___Reactants________________________. The substances on the right side of the arrow are the substances that result from the reaction. These substances are called ____________Products_______________. The arrow is read as either produces or ______yields_____________________. According to the law of conservation of __________mass_________________, atoms are neither lost nor gained during a chemical reaction. This law is illustrated when a chemical equation is ________Balanced___________. When this is done, there will be the same number of ___________atoms________________ of each kind on both sides of the equation. In a chemical equation, the numbers that are placed in front of the symbols and the formulas are called ______________coefficients_____________. They are necessary to keep the ___________________________ of atoms in balance. There are several rules for balancing an equation. First, write the correct ____________(not so sure)_____________ for each reactant and product. Next, choose the coefficients that make the number of atoms of each _______elements(not so sure)________________ on each side of the equation equal. The correctly written formula should not be changed. If you change the formula of a substance, the equation is no longer ___________correct_____________. Changing a formula will indicate a ________Substance___________________ different than the one intended. To balance the equation Mg + O2 à MgO, first choose coefficients to make the number of atoms of each element on each side of the equation equal. You would need to place a coefficient of _________two___________
88.98 %
The Balance Chemical Equation is as follow,
2 HCl + Pb(NO₃)₂ → 2 HNO₃ + PbCl₂
According to equation,
331.2 g (1 mole) Pb(NO₃)₂ produces = 278.1 g (1 mole) PbCl₂
So,
870 g of Pb(NO₃)₂ will produce = X g of PbCl₂
Solving for X,
X = (870 g × 278.1 g) ÷ 331.2 g
X = 730.5 g of PbCl₂
Therefore,
Theoretical Yield = 730.5 g
Also as given,
Actual Yield = 650 g
So using following formula for percentage yield,
%age Yield = (Actual Yield / Theoretical Yield) × 100
Putting values,
%age Yield = (650 g / 730.5 g) × 100
%age Yield = 88.98 %
Brianliest please and thank you.
Hydrophobic molecules tend to be nonpolar molecules that group together to form micelles rather than be exposed to water. Hydrophobic molecules typically dissolve in nonpolar solvents (e.g., organic solvents).
The acid - base equation between H2PO3^- and HS^- is H2PO3^- + HS^- ⇄S^- + H3PO3.
<h3>What is an acid?</h3>
An acid is a substance that can donate hydrogen ions while a base is a substance that can accept hydrogen ion. This is the acid base definition according to Brownstead - Lowry.
To show the acid - base relationship between H2PO3^- and HS^-, we have the equation;
H2PO3^- + HS^- ⇄S^- + H3PO3
Learn more about acids and bases: brainly.com/question/10282816