Answer:
<em>Proof below</em>
Step-by-step explanation:
<u>Right Triangles</u>
In any right triangle, i.e., where one of its internal angles is 90°, some interesting relations stand. One of the most-used is Pythagora's Theorem.
In a right triangle with shorter sides a and b, and longest side c, called the hypotenuse, the following equation is satisfied:

The image provided in the question shows a line passing through points A(0,4) and B(3,0) that forms a right triangle with both axes.
The origin is marked as C(0,0) and the point M is the midpoint of the segment AB. We have to prove.

First, find the coordinates of the midpoint M(xm,ym):


Thus, the midpoint is M( 1.5 , 2 )
Calculate the distance CM:


CM=2.5
Now find the distance AB:

AB=5
AB/2=2.5
It's proven CM is half of AB
Answer:
0 ≤ t ≤ 5.
Step-by-step explanation:
In the function
,
is the independent variable. The domain of
is the set of all values of
that this function can accept.
In this case,
is defined in a real-life context. Hence, consider the real-life constraints on the two variables. Both time and volume should be non-negative. In other words,
.
.
The first condition is an inequality about
, which is indeed the independent variable.
However, the second condition is about
, the dependent variable of this function. It has to be rewritten as a condition about
.
.
Hence, t ≤ 5.
Combine the two inequalities to obtain the domain:
0 ≤ t ≤ 5.
Answer:
6
Step-by-step explanation:
9 ^3 =3^m
(3^2) ^3 =3^m
3 ^(2×3)=3^m
3 ^6 =3 ^m
m =6
<span>The answer would be (f(x) = (x – 8)2 – 56)</span>
Answer:
the answer is 434843144649