I will say this is True….?
Less friction to stop the wheel from turning
Answer:
187.34 atm
Explanation:
From the question,
PV = nRT.................. Equation 1
Where P = Pressure, V = Volume, n = number of mole, R = molar gas constant, T = Temperature.
make P the subject of the equation
P = nRT/V.............. Equation 2
n = mass(m)/molar mass(m')
n = m/m'............... Equation 3
Substitute equation 3 into equation 2
P = (m/m')RT/V............ Equation 4
Given: m = 46 g, T = 25°C = (25+273) = 298 K, V = 3.00 L
Constant: m' = 2 g/mol, R = 0.082 atmL/K.mol
Substitute these values into equation 4
P = (46/2)(0.082×298)/3
P = (23×0.082×298)/3
P = 187.34 atm
Answer:
The correct answer is - Frequency is the number of wavelengths, which is measured in hertz.
Explanation:
Frequency is the number of waves that go through a fixed point at a particular time. Hertz is the SI unit for frequency which means that one hertz is equal to a unit number of waver passes in a unit time to a fixed point.
As the frequency of a wave increases which means the number of waves increases in the unit time, the shorter the wavelength will be.
a higher frequency wave has more energy than a lower frequency wave with the same amplitude.
Answer:
1. The product has a higher Rf value on a silica gel TLC plate because it is more polar than the starting methyl benzoate.
2. False
3. True
Explanation:
In chromatography, there is a stationary phase and a mobile phase. The ratio of the distance moved by a component and the distance moved by the solvent gives the retention factor (Rf).
Since silica gel is a polar solvent, it will retain the more polar product methyl m-nitrobenzoate compared to the methyl benzoate starting material.
In comparing the electrophillic aromatic substitution of m-nitrobenzoate and methyl benzoate, we must remember that the presence of electron withdrawing groups (such as -NO2 and -CHO) on the aromatic compound deactivates the compound towards electrophillic aromatic substitution hence, methyl m-nitrobenzoate is less reactive than methyl benzoate in Electrophilic Aromatic Substition and Methyl benzoate is less reactive than benzene in Electrophilic Aromatic Substition