<span>The solid lines between N and Mg are actually ionic bonds. N has 5 valence electrons (2 of which are paired). Of the 3 that are unpaired, 2 are part of covalent bonds with adjacent carbon atoms. N accepts an extra electron to complete its octet, but gets a formal charge of -1. This allows for formation of an ionic bond with Mg, which is +2. Two of these charged N atoms therefore neutralize the charge of the central Mg. As for the coordinate (dative) covalent bonds, Mg has empty orbitals - the ionic bonds with the charged N atoms give it only 4/8 possible valence electrons.
The other two N atoms (dotted lines) have a formal charge of 0 since they form three covalent bonds with adjacent carbon atoms, but they still have a lone pair. Therefore, just to improve stability, each of these N atoms can "donate" its lone pair to Mg in order to complete its octet.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
<h3>Answer:</h3>
a) Moles of Caffeine = 1.0 × 10⁻⁴ mol
b) Moles of Ethanol = 4.5 × 10⁻³ mol
<h3>Solution:</h3>
Data Given:
Mass of Caffeine = 20 mg = 0.02 g
M.Mass of Caffeine = 194.19 g.mol⁻¹
Molecules of Ethanol = 2.72 × 10²¹
Calculate Moles of Caffeine as,
Moles = Mass ÷ M.Mass
Putting values,
Moles = 0.02 g ÷ 194.19 g.mol⁻¹
Moles = 1.0 × 10⁻⁴ mol
Calculate Moles of Ethanol as,
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Particles and Avogadro's Number is given as,
Number of Moles = Number of Molecules ÷ 6.022 × 10²³
Putting values,
Number of Moles = 2.72 × 10²¹ Molecules ÷ 6.022 × 10²³
Number of Moles = 4.5 × 10⁻³ Moles
Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Answer:a lightbulb burning
Explanation:
Apex
Answer:Cell reaction is going forward.
Explanation:
For any chemical reaction to be spontaneous or to move in forward direction the ΔG ,the Gibbs free energy must be negative.
The cell potential of a battery is positive for a spontaneous reaction, so for a battery to give output its cell potential must be positive.
Thermodynamics and electro-chemistry are related in the following manner:
ΔG=-nFE
n=number of electrons involved
F=Faradays constant
E=cell pottential of battery
so from the above equation ΔG would only be negative when E cell that is the cell potential is positive.
For a battery which is being used its cell potential is positive and hence the ΔG would be negative. So the cell reaction occurring would be in forward direction as ΔG is negative.
when the cell potential Ecell is 0 then ΔG is also zero then the reaction occurring in battery would be at equilibrium.
When the cell potential Ecell is - then ΔG is positive and the reaction would be occurring backwards.