Answer: This is from a wiki i found. Approximately one third of a cell’s proteins are destined to function outside the cell’s boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo. Have a nice day.
Explanation: Plz make brainliest
Answer:
on the right side two and on left side it is6 yes it is a balanced equation pls mark me as the brainliset hope it helps you
Answer:
the answer is longgitudinal
Blue box. Gravitational potenti al energy<span> changes into kinetic </span>energy. The equation for gravitat ional potential energy<span> is GPE = mgh, where m i s the mass in kilograms, g is the a cceleration due to gravity (9.8 on Earth), and h is the height above the ground in meters</span>
Answer : The value of 'R' is 
Solution : Given,
At STP conditions,
Pressure = 1 atm
Temperature = 273 K
Number of moles = 1 mole
Volume = 22.4 L
Formula used : 
where,
R = Gas constant
P = pressure of gas
T = temperature of gas
V = volume of gas
n = number of moles of gas
Now put all the given values in this formula, we get the values of 'R'.


Therefore, the value of 'R' is
.