<span>The high-energy electron travels down an electron transport chain, losing energy as it goes.
Some of the released energy drives pumping of </span><span><span>\text H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the stroma into the thylakoid interior, building a gradient.
</span><span><span>H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the splitting of water also add to the gradient.
</span><span><span> H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions flow down their gradient and into the stroma, they pass through ATP synthase, driving ATP production in a process known as </span>chemiosmosis<span>.</span>
Answer: The pair that consists of a base and its conjugate acid in that order.
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.



is gaining a proton, thus it is considered as a brønsted-lowry base and after gaining a proton, it forms
which is a conjugate acid.
Answer:
The correct answer is - option D. the boiling point of solution A will be lower than the boiling point of solution B
Explanation:
Colligative properties such as a decrease in the freezing point of the solution, increase in the boiling point of substance, decrease in Lowering of vapor pressure, and other properties depend upon the number of molecules only.
In the given solution the equal amount of two solutions are mixed that is 50 grams however due to the difference in the molecular mass so the atoms present in both solution A and B will be different. It is known that the number of atoms of a substance is inversely proportional to the molecular mass of the particular substance.
As it is given that Solution B has a low molecular mass which means it has a high number of atoms that means its boiling point will be higher than solution A.
Answers:
1. 3-ethyl-3-methylheptane; 2. 2,2,3,3-tetramethylpentane; 3. hexa-2,4-diene.
Explanation:
<em>Structure 1
</em>
- Identify and name the longest continuous chain of carbon atoms (the main chain has 7 C; ∴ base name = heptane).
- Identify and name all the substituents [a 1C substituent (methyl) and a 2C substituent (methyl).
- Number the main chain from the end closest to a substituent.
- Identify the substituents by the number of the C atom on the main chain. Use hyphens between letters and numbers (3-methyl, 3-ethyl).
- Put the names of the substituents in alphabetical order in front of the base name with no spaces (3-ethyl-3-methylheptane)
<em>Structure 2</em>
- 5C. Base name = pentane
- Four methyl groups.
- Number from the left-hand end.
- If there is more than one substituent of the same type, identify each substituent by its locating number and use a multiplying prefix to show the number of each substituent. Use commas between numbers (2,2,3,3-tetramethyl).
- The name is 2,2,3,3-tetramethylpentane.
<em>Structure 3
</em>
- Identify and name the longest continuous chain of carbon atoms that passes through as many double bonds as possible. Drop the <em>-ne</em> ending of the alkane to get the root name <em>hexa-</em>.
- (No substituents).
- Number the main chain from the end closest to a double bond.
- If there is more than one double bond use a multiplying prefix to indicate the number of double bonds (two double bonds = diene) and use the smaller of the two numbers of the C=C atoms as the double bond locators (2,4-diene)
- Put the functional group name at the end of the root name (hexa-2,4-diene).
<em>Note</em>: The name 2,4-hexadiene is <em>acceptable</em>, but the <em>Preferred IUPAC Name</em> puts the locating numbers as close as possible in front of the groups they locate.