Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:
Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:
It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:
Beat regards!
Answer:
#1 A
#2 B
#3 C
#4 c
Explanation:
#1 can give reference to a mountain the higher the altitude the colder it will get
#2 talking about climate not seasons per say. focus on climate answers
#3 wind carry moisture from the sea on to land which cause precipitation
#4 Monsoons is correct
<span>294400 cal
The heating of the water will have 3 phases
1. Melting of the ice, the temperature will remain constant at 0 degrees C
2. Heating of water to boiling, the temperature will rise
3. Boiling of water, temperature will remain constant at 100 degrees C
So, let's see how many cal are needed for each phase.
We start with 320 g of ice and 100 g of liquid, both at 0 degrees C. We can ignore the liquid and focus on the ice only. To convert from the solid to the liquid, we need to add the heat of fusion for each gram. So multiply the amount of ice we have by the heat of fusion.
80 cal/g * 320 g = 25600 cal
Now we have 320 g of ice that's been melted into water and the 100 g of water we started with, resulting in 320 + 100 = 420 g of water at 0 degrees C. We need to heat that water to 100 degrees C
420 * 100 = 42000 cal
Finally, we have 420 g of water at the boiling point. We now need to pump in an additional 540 cal/g to boil it all away.
420 g * 540 cal/g = 226800 cal
So the total number of cal used is
25600 cal + 42000 cal + 226800 cal = 294400 cal</span>
Answer: let me figure it out rlly quick
Explanation: