1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
10

Consider a model of a hydrogen atom in which an electron is in a circular orbit of radius r = 5.92×10−11 m around a stationary p

roton.What is the speed of the electron in its orbit?
Physics
1 answer:
DaniilM [7]3 years ago
6 0

Answer:

2.068 x 10^6 m / s

Explanation:

radius, r = 5.92 x 10^-11 m

mass of electron, m = 9.1 x 10^-31 kg

charge of electron, q = 1.6 x 10^-19 C

As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.

centripetal force = \frac{mv^{2}}{r}

Electrostatic force = \frac{kq^{2}}{r^{2}}

where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2

So, balancing both the forces we get

\frac{kq^{2}}{r^{2}}=\frac{mv^{2}}{r}

v=\sqrt{\frac{kq^{2}}{mr}}

v=\sqrt{\frac{9\times 10^{9}\times1.6\times 10^{-19}\times 1.6\times 10^{-19}}{9.1\times 10^{-31}\times 5.92\times10^{-11}}}

v = 2.068 x 10^6 m / s

Thus, the speed of the electron is give by  2.068 x 10^6 m / s.

You might be interested in
Determine the kinetic energy of a 55kg woman running with the velocity of 5.87m/s
Greeley [361]
The formula for kinetic energy = ½m·v<span>2

1/2 * 55 kg x 5,87 m/s ^2 = 27.5 x </span>34.4569 = <span>947.56475 Joule </span>≈ 948 J
4 0
3 years ago
A proton moves with a velocity of v with arrow = (4î − 6ĵ + k) m/s in a region in which the magnetic field is B with arrow = (î
nalin [4]

Answer:

F = [(6.4 × 10⁻¹⁹)î + (8.0 × 10⁻¹⁹)ĵ + (22.4 × 10⁻¹⁹)k] N

Magnitude of F = (2.466 × 10⁻¹⁸) N

Explanation:

The magnetic force, F, on a given charge, q, moving with velocity, v, in a magnetic field, B, is given as the vector product

F = qv × B

where v = (4î − 6ĵ + k) m/s

B = (î + 2ĵ − k) T

The particle is a proton, hence,

q = (1.602 × 10⁻¹⁹) C

F = qv × B = q (v × B)

(v × B) is given as (4î − 6ĵ + k) × (î + 2ĵ − k)

The cross product is evaluated as a determinant of

| î ĵ k |

|4 -6 1 |

|1 2 -1 |

î [(-6)(-1) - (2)(1)] - ĵ [(4)(-1) - (1)(1)] + k [(4)(2) - (-6)(1)]

î (6 - 2) - ĵ (-4 - 1) + k (8 + 6) = (4î + 5ĵ + 14k)

(v × B) = (4î + 5ĵ + 14k)

F = q (v × B) = (1.6 × 10⁻¹⁹) (4î + 5ĵ + 14k)

F = [(6.408 × 10⁻¹⁹)î + (8.01 × 10⁻¹⁹)ĵ + (22.428 × 10⁻¹⁹)k] N

Magnitude of F =

√[(6.408 × 10⁻¹⁹)² + (8.01 × 10⁻¹⁹)² + (22.428 × 10⁻¹⁹)²]

Magnitude of F = (2.466 × 10⁻¹⁸) N

Hope this Helps!!!

4 0
3 years ago
Read 2 more answers
WORD BANK:
Mkey [24]

Answer:

1. Vector, base

2. Vector, derived

3. Vector, ?

4. Scalar, derived

5. scalar, base

4 0
1 year ago
Is it possible for an object that has a constant negative acceleration to change the direction in which it is moving? Explain wh
lozanna [386]
Yes! I think there are two ways you could go with this answer: 1) Acceleration is the change in velocity over time, it can be negative or positive. If you have an object that is already moving forwards in a straight line and give it a constant negative acceleration, it will slow down and then start going in reverse. 2)Velocity is a vector, meaning it has both magnitude and direction. In the example above, the acceleration is due to a change in magnitude, or speed (from +ve to -ve) but not a change in direction. Something that has constant speed but is changing direction is also accelerating (like something that is orbiting). You could use the earth as an example, which is constantly accelerating due to moving in a circle around the sun. At any time in the year you can say that in half a year's time the earth's direction will be reversed.
4 0
2 years ago
Multiple-Concept Example 6 reveiws the principles that play a role in this problem. A nuclear power reactor generates 2.3 x 109
r-ruslan [8.4K]

Answer:

change in mass = 2.41*10^{8}kg

Explanation:

The change in the mass can be computed by using the relation

E=\Delta mc^2\\\Delta m=\frac{E}{c^2}(1)

That is, the energy liberated comes from the mass of the nuclear fuel. The energy generated in one year is

E=Pt=2.3*10^{9}\frac{J}{s}*1 year*\frac{365.25 day}{1 year}*\frac{24h}{1 day}*\frac{3600s}{1h}=7.25*10^{16}J

Hence, by replacing in the equation (1) you have  (c=3*10^{8}m/s)

\Delta m=\frac{7.25*10^{16}J}{3*10^{8}\frac{m}{s}}=2.41*10^{8}kg

HOPE THIS HELPS!!

3 0
3 years ago
Read 2 more answers
Other questions:
  • How large an expansion gap should be left between steel railroad rails if they may reach a maximum temperature 36.0°C greater th
    15·1 answer
  • Sally travels by car from one city to another. She drives for 26.0 min at 83.0 km/h, 52.0 min at 41.0 km/h, and 45.0 min at 60.0
    8·1 answer
  • PLEASE HELP!! 13 POINTS! SCIENCE!
    5·2 answers
  • Why are bridges declared unsafe after a long use​
    14·1 answer
  • a student compared two samples of matter he recorded the results in this chart which property do the two samples have in common
    7·1 answer
  • A book has a mass of 50 grams and an<br> acceleration of 5 m/s/s. What is the<br> force on the book?
    10·2 answers
  • Jax fell while running and cut his knee. He noticed at the end of the day that his body had produced a hard film over his scrape
    7·1 answer
  • What work is the person doing doing to the box if the box is just being held and it is not moving?
    9·1 answer
  • If a force of 1250 N acts on an area of 25 metres squared, what will be the pressure acting on the surface? Show your working as
    15·2 answers
  • A crate with a mass of 175.5 kg is suspended from the end of a uniform boom with a mass of 94.7 kg. The upper end of the boom is
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!