Answer:

Explanation:
Given:
temperature at the hotter end, 
temperature at the cooler end, 
length of rod through which the heat travels, 
cross-sectional area of rod, 
mass of ice melted at zero degree Celsius, 
time taken for the melting of ice, 
thermal conductivity k=?
By Fourier's Law of conduction we have:
......................................(1)
where:
=rate of heat transfer
dT= temperature difference across the length dx
Now, we need the total heat transfer according to the condition:
we know the latent heat of fusion of ice, 



Now the heat rate:



Now using eq,(1)


Well, im pretty sure that when we do touch eachother, the atoms themselves are touching. idk if this is what ur looking for but hope this helps.
Out of the following choices given, hydraulic balances performs measurement in a closed compartment with no air currents to disturb measurement. The correct answer is C.
Refer to the diagram shown below.
The force, F, is applied at 5 cm from the elbow.
For dynamic equilibrium, the sum of moments about the elbow is zero.
Take moments about the elbow.
(5 cm)*(F N) - (30 cm)*(250 N) = 0
F = (30*250)/5 = 1500 N
Answer: 1500 N
To develop this problem it is necessary to apply the oscillation frequency-related concepts specifically in string or pipe close at both ends or open at both ends.
By definition the oscillation frequency is defined as

Where
v = speed of sound
L = Length of the pipe
n = any integer which represent the number of repetition of the spectrum (n)1,2,3...)(Number of harmonic)
Re-arrange to find L,

The radius between the two frequencies would be 4 to 5,


Therefore the frequencies are in the ratio of natural numbers. That is

Here f represents the fundamental frequency.
Now using the expression to calculate the Length we have

Therefore the length of the pipe is 1.3m
For the second harmonic n=2, then

Therefore the length of the pipe in the second harmonic is 2.6m