Answer:
4800N
Explanation:
Lets assume,
Mass of first object = m₁
Mass of second object = m₂
Distance between the two objects = r
Thus the force between the two objects will be

where, G = Universal gravitational constant
Given, F = 2400N
New mass of second object = 2m₂
Now, the force will be




Thus, F₂ = 4800N
Answer: 0.42 Amperes
Explanation:
Given that:
Current, I = ?
Electric charge Q = 100 coulomb
Time, T = 4.0 minutes
(The SI unit of time is seconds. so, convert 4.0 minutes to seconds)
If 1 minute = 60 seconds
4.0 minutes = 4.0 x 60 = 240 seconds
Since electric charge, Q = current x time
i.e Q = I x T
100 coulomb = I x 240 seconds
I = 100 coulomb / 240 seconds
I = 0.4167 Amperes (round to the nearest hundredth which is 0.42 amperes)
Thus, 0.42 Amperes of current flows in the circuit.
kinematic equation
v=u+at
v-u=at
v-u = 1x5
the driver will have increased speed by 5 m/s. actual speeds unknown
Inertia is the resistance of an object to moving or stopping
This graph shows data up to about 2010. So it couldn't have been drawn before 2010. OF COURSE the data from only 10 years earlier was more reliable than the data that was 120 years old ! It wasn't even measured the same way back then as it is now.