Answer:
v_average = 15 m / s
Explanation:
The average speed can be found in two ways,
* taking the distance traveled and divide it by the time spent
* taking the velocities in each time interval and then finding the weighted average by the time fraction
v_average = 1 / t_total ∑
vi ti
Let's apply this last equation
Total time is
t = t₁ + t₂
t = 10 + 10 = 20 min
v_average = 10/20 10 + 10/20 20
v_average = 10/2 + 20/2
v_average = 15 m / s
Answer:
Explanation:
1. We use the conservation of momentum for before the raining and after. And also we take into account that in 0.5h the accumulated water is
100kg/h*0.5h = 50kg

2. the momentum does not conserve because the drag force of water makes that the boat loses velocity
3. If we assume that the force of the boat before the raining is

where we have assumed that the acceleration of the boat is 1m/s{2} just before the rain starts
And if we take the net force as

where we take v=1m/s because we are taking into account tha velocity just after the rain stars.
I hope this is useful for you
regards
Answer:
Magnitude of magnetic field is 1.29 x 10⁻⁴ T
Explanation:
Given :
Current flowing through the wire, I = 16.9 A
Length of wire. L = 0.69 m
Magnetic force experienced by the wire, F = 1.5 x 10⁻³ N
Consider B be the applied magnetic field.
The relation to determine the magnetic force experienced by current carrying wire is:
F = ILBsinθ
Here θ is the angle between magnetic field and current carrying wire.
According to the problem, the magnetic field and current carrying wire are perpendicular to each other, that means θ = 90⁰. So, the above equation becomes:
F = ILB

Substitute the suitable values in the above equation.

B = 1.29 x 10⁻⁴ T