Explanation:
Let the speeds of father and son are
. The kinetic energies of father and son are
. The mass of father and son are 
(a) According to given conditions, 
And 
Kinetic energy of father is given by :
.............(1)
Kinetic energy of son is given by :
...........(2)
From equation (1), (2) we get :
..............(3)
If the speed of father is speed up by 1.5 m/s, so the ratio of kinetic energies is given by :


Using equation (3) in above equation, we get :

(b) Put the value of
in equation (3) as :

Hence, this is the required solution.
Answer:
15.01 Liters
Explanation:
T₁ = Initial temperature = 25°C = 298.15 K
T₂ = Final temperature = 100°C = 373.15 K
V₁ = Initial volume = 12 mL
Here, pressure is constant so we apply Charles Law

∴ Final volume at 100°C is 15.01 Liters.
Answer:
2.30 × 10⁻⁸ N if the two electrons are in a vacuum.
Explanation:
The Coulomb's Law gives the size of the electrostatic force
between two charged objects:
,
where
is coulomb's constant.
in vacuum.
and
are the signed charge of the objects.
is the distance between the two objects.
For the two electrons:
.
.
.
The sign of
is negative. In other words, the two electrons repel each other since the signs of their charges are the same.
Hello,
Your answer to this problem is 400/3
Hope this helps!
Answer:
k = 26.25 N/m
Explanation:
given,
mass of the block= 0.450
distance of the block = + 0.240
acceleration = a_x = -14.0 m/s²
velocity = v_x = + 4 m/s
spring force constant (k) = ?
we know,
x = A cos (ωt - ∅).....(1)
v = - ω A cos (ωt - ∅)....(2)
a = ω²A cos (ωt - ∅).........(3)

now from equation (3)



k = 26.25 N/m
hence, spring force constant is equal to k = 26.25 N/m