Answer:
2.4s
Explanation:
The length of the pendulum = 75ft
Diameter d = 12 inches
The time period of the pendulum is given as
T = 2pi(L/g)^1/2
Then the time it takes to move from displacement to equilibrium is given as:
t = T/4
= (Pi/2)*(L/g)^1/2
= pi/2 x [(75x0.3048)/9.81]^0.5
= 1.57x[22.86/9.81)^0.5
= 2.4s
2.4 seconds is the least amount of time that it would take.
Answer:
Zero
Explanation:
Average velocity is given by:

where
d is the displacement of the trip
t is the time it takes for the trip to complete
In this problem, the net displacement of the swimmer is zero. In fact:
- First, he swims 30.0 m in the north direction
- Then, he travels back (-30.0 m) in the south direction, to the starting position
Since the final position is equal to the starting position, the displacement is zero:
d = 0
And therefore, the average velocity is also zero.
Answer:
With a force of 1 Newton, an object weighing 100 grams is dragged towards the planet's center. On Earth, an item with a mass of 100 grams has a gravitational pull of only 1%, or about kg.
Explanation:
i hope this helps