Answer with Explanation:
We are given that
Weight of an ore sample=17.5 N
Tension in the cord=11.2 N
We have to find the total volume and the density of the sample.
We know that
Tension, T=
=buoyancy force
T=Tension force
W=Weight
By using the formula

N

Where
=Volume of object
=Density of water
=Acceleration due to gravity
Substitute the values then we get


Volume of sample=
Density of sample,
Where mass of ore sample=1.79 kg
Substitute the values then, we get

Density of the sample=
The weight of a column of air with cross-sectional area 4. 5 m^2 extending from earth's surface to the top of the atmosphere is, 4.56*10^5N.
To find the answer, we have to know about the pressure.
<h3>How to find the weight of a column of air?</h3>
- As we know that the expression of pressure as,

where; F is the force, here it is equal to the weight of the air column, and A is the area of cross section.
- It is given that, the air column is extending from earth's surface to the top of the atmosphere, thus, the pressure will be atmospheric pressure,

- From this, the value of weight will be,

Thus, we can conclude that, the weight of a column of air with cross-sectional area 4. 5 m^2 extending from earth's surface to the top of the atmosphere is, 4.56*10^5N.
Learn more about the pressure here:
brainly.com/question/12830237
#SPJ4
Answer:
The induced emf between two end is
V
Explanation:
Given:
Length of rod
m
Height
m
Magnetic field
T
For finding induced emf,

Where
velocity of rod,
For finding the velocity of rod.
From kinematics equation,

Where
initial velocity, 



Put the velocity in above equation,

V
Therefore, the induced emf between two end is
V