Answer:
1.It's the world's most famous equation, but what does it really mean? "Energy equals mass times the speed of light squared." On the most basic level, the equation says that energy and mass (matter) are interchangeable; they are different forms of the same thing.
2.The process releases energy because the total mass of the resulting single nucleus is less than the mass of the two original nuclei.
3.In nuclear reactions, mass is never conserved—some mass is exchanged for energy and energy for mass. Nuclear reactions take place in an atom's nucleus. In a spontaneous nuclear reaction, such as radioactive decay, mass is "lost" and appears as energy in the form of particles or gamma rays.
4.In a nuclear reaction, mass decreases and energy increases. The sum of mass and energy is always conserved in a nuclear reaction.
5.The process releases energy because the total mass of the resulting single nucleus is less than the mass of the two original nuclei.
Explanation:
hope it helps
(Example 1 )
<span>If the Voltage that furnishes the current is an ideal (no internal resistance) Voltage source. Then; </span>
<span>V/R = i </span>
<span>V/2R = i/2 If external resistance doubles, current reduced to 1/2 of original value </span>
<span>V/3R = i/3 If external resistance triples, current reduced to 1/3 of original value </span>
<span>(Example 2) </span>
<span>But if the Voltage that furnishes the current is a practical [contains an internal resistance (Ri)] Voltage source. Then the current is a function of the Voltage source`s internal resistance, which does not double nor triple, plus the external resistance which is being doubled and tripled. </span>
<span>V/(R + Ri) = i </span>
<span>V/(2R + Ri) = greater than i/2 but less than I. </span>
<span>V/(3R + Ri) = greater than i/3 but less than i/2</span>
Answer:

Explanation:
Given that,
Initially, the spaceship was at rest, u = 0
Final velocity of the spaceship, v = 11 m/s
Distance accelerated by the spaceship, d = 213 m
We need to find the acceleration experienced by the occupants of the spaceship during the launch. It is a concept based on the equation of kinematics. Using the third equation of motion to find acceleration.

So, the acceleration experienced by the occupants of the spaceship is
.