Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg
Answer:
160N/m
Explanation:
According to Hooke's law which states that the extension of an elastic material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically,
F = ke where
F is the applied force
k is the spring constant
e is the extension
From the formula k = F/e
Since the body accelerates when the block is released, F = ma according to Newton's second law of motion.
The spring constant k = ma/e where
m is the mass of the block = 0.4kg
a is the acceleration = 8.0m/s²
e is the extension of the spring = 2.0cm = 0.02m
K = 0.4×8/0.02
K = 3.2/0.02
K = 160N/m
The spring constant of the spring is therefore 160N/m
Answer: the work will also increase by double
Explanation:
This is because they are directly proportional in the formula w=f x d
Answer:
The induced voltage in the Secondary is 18 volt.
Explanation:
Given that,
Voltage = 120 volt
Number of turns in primary = 500
Number of turns in secondary = 75
We need to calculate the induced voltage in the Secondary
Using relation number of turns and voltage in primary and secondary

Where,
= Number of primary coil
= Number of secondary coil
= Voltage of primary coil
= Voltage of primary coil
Put the value into the formula



Hence, The induced voltage in the Secondary is 18 volt.
Ans: Radiocarbon dating uses carbon isotopes.
Radiocarbon dating relies on the carbon isotopes carbon-14 and carbon-12. Scientists are looking for the ratio of those two isotopes in a sample. Most carbon on Earth exists as the very stable isotope carbon-12, with a very small amount as carbon-13.